A General Framework for Addressing "Any" Machine Learning Problem

Darren Homrighausen

Visiting Assistant Professor, Dept. of Statistical Science, Southern Methodist University

The Setup

A machine learning problem can be broken up into two parts:

1. Querying and then cleaning and/or manipulating the data into a format suitable for analysis
(Sometimes referred to as munging)

2. Applying machine learning methods to the data

The Setup

A machine learning problem can be broken up into two parts:

1. Querying and then cleaning and/or manipulating the data into a format suitable for analysis
(Sometimes referred to as munging)

2. Applying machine learning methods to the data

Querying

INSERT INTO interestingData
SELECT id, trans, city, date
FROM cust_table
WHERE date > 1/1/2015
ORDER BY city, date;
-
.

The Setup

A machine learning problem can be broken up into two parts:

1. Querying and then cleaning and/or manipulating the data into a format suitable for analysis
(Sometimes referred to as munging)

2. Applying machine learning methods to the data

The Setup

A machine learning problem can be broken up into two parts:

1. Querying and then cleaning and/or manipulating the data into a format suitable for analysis
(Sometimes referred to as munging)

2. Applying machine learning methods to the data

The features

We need to determine the...
... appropriate processing of X
(Known as the features or inputs)

Example:

X : vectorized sky survey

Semi-supervised learning for photometric supernova classification ${ }^{\star}$
Joseph W. Richards, ${ }^{1,2} \dagger$ Darren Homrighausen, ${ }^{3}$ Peter E. Freeman, ${ }^{3}$ Chad M. Schafer ${ }^{3}$ and Dovi Poznanski ${ }^{1,4}$

The features: Qualitative

	x 1	x 2
1	-0.6264538	no
2	0.1836433	yes
3	-0.8356286	yes
4	1.5952808	no

Gets transformed to...

	x1		x2no
1	-0.6264538	1	0
2	0.1836433	0	1
3	-0.8356286	0	1
4	1.5952808	1	0

The features: Quantitative

Many methods are not invariant to scale
The usual way of addressing this is...
... Do standardize all features for which scale is meaningful:

$$
X \leftarrow \frac{(X-\operatorname{mean}(X))}{\operatorname{sd}(X)}
$$

... Don't standardize any

 scale-free nor sparse features(Care must be taken if normalizing sparse data)

NIH Public Access
Author Manuscript
Published in final edited form as
Analyst 2012 September 21; 137(18): 4280-4286. doi:10.1039/c2an35578g.

Surface Enhanced Raman Spectroscopy (SERS) for the
discrimination of Arthrobacter strains based on variations in cell surface composition

Kate E. Stephen ${ }^{\text {a }}$, Darren Horrrighausen ${ }^{\text {b }}$, Glen DePalma ${ }^{\text {c }}$, Cindy H. Nakatsu ${ }^{\text {a }}$, and Joseph Irudayaraj ${ }^{\text {d }}$

The features: Text

The features: Text

Buyer:

($)$ Always a pleasure! Smooth \& pleasant transaction!

```
f***(3618 *)
```

Jun-10-14 13:52

Thomas Watson, Jr. - IBM Chairman - Authentic Autographed Letter (TLS) (\#390846670600) US \$11.61

Seller:

(4) Great communication. A pleasure to do business with.

Buyer: f**a(3618 *)
Jun-05-14 18:59
View Item
Thomas Watson, Jr. - IBM Chairman - Authentic Autographed Letter (TLS) (\#390846670600)
The X matrix can then be written as $X=\left[\begin{array}{c}X_{1}^{\top} \\ X_{2}^{\top} \\ \vdots\end{array}\right]$ where...
$\left.X_{1}^{\top}=\begin{array}{ccccccc}\text { always pleas smooth transact great commun busin } \\ 1 & 2 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
$X_{2}^{\top}=\left[\begin{array}{ccccccc}0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}\right]$

[^0]
The features: Missing

Corrupted, unrecorded, or unreliable data is commonly referred to as missing data

In statistics, correcting for missing data is known as imputation
There are many, many techniques available:

The features: Missing

- Data size/complexity
(Does it fit in RAM?)
- Business purpose
(Is data precious? Development time?)
- Are any observations/features missing a large fraction of values?
- Type of features
(Any sparsity? Is multivariate normality appropriate?)
- Any atypical missing value indicators?
(e.g. using - 1000 for income to indicate a missing value)

The supervisor

We need to determine the...
... nature of Y
(Known as the supervisor(s) or output(s))
Example:
$Y=\left\{\begin{aligned} 1 & \text { If type 1a supernova } \\ -1 & \text { If not }\end{aligned}\right.$

Semi-supervised learning for photometric supernova classification ${ }^{\star}$
Joseph W. Richards, ${ }^{1,2} \dagger$ Darren Homrighausen, ${ }^{3}$ Peter E. Freeman, ${ }^{3}$ Chad M. Schafer ${ }^{3}$ and Dovi Poznanski ${ }^{1,4}$

Evaluation Metrics

How to judge success?
Often, this is just mean square error or miss-classification rate
There can be many others:

EXAMPLE: When classifying supernovae, it is bad to incorrectly label a Type la supernova
\rightarrow Evaluation metric:

$$
\left(\frac{1}{\text { Total } \#}\right) \frac{(\# \text { Correctly labeled })^{2}}{\# \text { Correctly labeled }+3(\# \text { Incorrectly labeled) }}
$$

Validation set

We need a realistic measure of the evaluation metric
If at all possible, set aside a (random) validation set
(Say, 10\% of the data)

Alternatively (or additionally) a common approach is K-Fold Cross-Validation (CV):

Very important: Make sure to use stratified sampling over

- Any rare, qualitative features
- The supervisor Y
(If doing classification)

The analysis

Turning these ideas into procedures

There are roughly three regimes of interest, assuming $X \in \mathbb{R}^{m \times n}$

Additionally: Is the data sparse?
(i.e. Does it have a lot of zeros?)

Big data

Big data is usually characterized by 4 " V 's"
(Volume, Variety, Velocity, Veracity)
Depending on the data and the desired method, we could:

- Combine randomized projections together with in-memory procedures
- Use stochastic gradient descent (or related methods)
- Leverage an iterative implementation for exact computation (e.g. the QR decomposition for least squares)
- Break the computations down into small bits and distribute these to different cores/processors/nodes
(e.g. using the MapReduce paradigm)

High dimensional Regime: Examples

genes

Methods

Methods: Types of learning

Methods: Dimension Reduction

Dimension reduction can help by ...
... reducing the computational load at later steps
... improving prediction performance

Some examples..

Methods: Supervised

- CLASSIFICATION:
- (Sparse) Logistic Regression (I include Linear Discriminant Analysis (LDA) here)
- Naive Bayes
- Support Vector Machines (SVM)
- k-Nearest Neighbors (KNN)
- Regression:
- (Sparse) Linear Regression
(I include Elastic Net here)
- Support Vector Regression
- Both:
- Random Forest
- Gradient Boosting Machines (GBM)
- Neural Networks

LEARNing

Example: Semi-supervised learning

1. Form $X=U D V^{\top}$
(That is, the singular value decomposition of the (scaled) matrix X)
2. Project Y onto the column space spanned by the first q columns of UD (call this object Z_{q})

(This is commonly referred to as "principal components regression")

Analysis flowchart

- It is very important to save any preprocessing/transformations. These must be applied to the test features
- Choose hyper-parameters via CV or other risk estimator (e.g. q from principal components regression)

Ensemble methods

Combining supervised methods can result in improved performance
These ensembles or stacks can be formed in several ways
A feature based approach is as follows:

$4 \square>4$ 盀 $1>4$ 三 >4 三 1 三

Goal

Let's classify documents about renaissance artists and the corresponding TMNT

Analysis flowchart: Reminder

Preprocessing

"... highly skilled in Ninjutsu Olympic-level agility, speed and strength Keen strategist Master of stealth..."
"... he was commissioned to finish the carving of the last small figures of the Shrine of St. Dominic, in the...."

(Note: we wouldn't want to subtract column means from this data... why?)

$$
X \in \mathbb{R}^{m \times n} \rightarrow m=141 \text { and } n=5185
$$

Dimension reduction

Dimension reduction

" ...Category View page ratings Rate this page What's this? Trustworthy Objective Complete Well-written I am highly knowledgeable about this topic (optional) Submit ratings...

ML PROCEDURE

- Classification:
- (Sparse) Logistic Regression
- Naive Bayes
- Support Vector Machines (SVM)
- k-Nearest Neighbors (KNN)
- REGRESSION:
- (Sparse) Linear Regression
- Support Vector Regression
- Both:
- Random Forest
- Gradient Boosting Machines (GBM)
- Neural Networks

ML procedure

- Classification:
- (Sparse) Logistic Regression
- Naive Bayes
- Support Vector Machines (SVM)
- k-Nearest Neighbors (KNN)
- REGRESSION:
- (Sparse) Linear Regression
- Support Vector Regression
- Both:
- Random Forest
- Gradient Boosting Machines (GBM)
- Neural Networks

ML Procedure: Sparse logistic Regression

$$
\begin{aligned}
& \pi(X)=\operatorname{Prob}\left(Y=\text { artist } \mid X=[\text { accademia, accent, accept, accid,.... }]^{\top}\right) \\
& \log \left(\frac{\pi(X)}{1-\pi(X)}\right)=\beta^{\top} X
\end{aligned}
$$

$$
\rightarrow \ell(\beta)=-\sum_{i=1}^{m}\left[Y_{i} X_{i}^{\top} \beta-\log \left(1+e^{X_{i}^{\top} \beta}\right)\right] \text { is the objective }
$$

Constrained minimization \longleftrightarrow
\rightarrow Use projected gradient descent
(1) $\hat{\beta} \stackrel{\text { update }}{=} \hat{\beta}-\left.\eta \nabla \ell\right|_{\hat{\beta}}$
(2) $\hat{\beta} \stackrel{\text { set }}{=} \underset{\text { feasible } \beta}{\operatorname{argmin}}\|\hat{\beta}-\beta\|$

ML procedure: Sparse logistic Regression

INFERENCE:
The magnitude/sign of $\hat{\beta}$ indicates which words affect the estimated probabilities the most
$\pi(X)=\operatorname{Prob}\left(Y=\right.$ artist $\left.\mid X=[\text { accademia, accent, accept, accid, } \ldots]^{\top}\right)$

patron

$\hat{\beta}$: positive, negative

Wrapping up

This approach has performed well on many of the problems I have worked on

Of course, nothing is perfect
It is important to keep on improving on what we have learned...
... just like in machine learning

Thank you!

[^0]: A text analysis of Ebay auctions

