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Overview of problem
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A big problem

Large data sets have become very common

Astrophysics: Modern cosmology relies on creating a
very large database of a particular type of supernova.
(Can we classify and record the type of the ∼30 billion/year supernovae

observable from Earth?)

Text processing: Comments left by buyer/seller in
eBay auctions along with sales price of the item
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eBay auctions
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Example big data problem
Buyer:

Seller:

The data (∼750 Gb, millions of rows, thousands of columns):

always pleas smooth transact great commun busin Sales Price ($)

X>
1 = [ 1 2 1 1 0 0 0 ], Y1 = [ 17.53 ]

X>
2 = [ 0 1 0 0 1 1 1 ], Y2 = [ 17.53 ]
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Core techniques
Suppose we have a matrix X ∈ Rn×p and vector Y ∈ Rn

(eBay review: each column of X is a count for each word, Y is the sales price)

Least squares:
Finding

β̂LS such that min
β
||Xβ − Y ||22 =

∣∣∣∣∣∣Xβ̂ − Y
∣∣∣∣∣∣2

2

Principal Components Analysis (PCA):
(Or graph Laplacian or diffusion map or..)

Finding U , V orthogonal and D diagonal such that

X− X = UDV>

where
X = 11>X
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Core techniques

If X fits into random access memory (RAM), there exist
excellent algorithms in LAPACK that...

• ... have double precision

• ... are very stable

• ... have cubic complexity with small constants
(General least squares problem: O(np2))

• ... require extensive random access to matrix

There is a lot of interest in finding and analyzing techniques
that extend these approaches to large(r) problems
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Out of core techniques

If X is too large to manipulate in RAM, we can use:

• (Stochastic) gradient descent

• Conjugate gradient

• iterative QR updates

• Krylov subspace methods (e.g. SLEPc or IRLBA)

(These can use less storage/computations but more read/write latency and are

approximate)
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Out of core techniques
Many techniques focus on randomized compression
(This is sometimes known as sketching)

Least squares:
1. Rokhlin, Tygert “A fast randomized algorithm for overdetermined linear

least-squares regression” (2008)
2. Drineas, Mahoney, et al. “Faster least squares approximation’ (2011)
3. Woodruff “Sketching as a tool for numerical linear algebra” (2013)
4. Pilanci and Wainwright “Iterative Hessian Sketch..” (2016)
5. Homrighausen, McDonald“Compressed and Penalized Linear Regression”

(under review)

Spectral Decomposition:
1. Halko, et al. “Finding structure with randomness: probabilistic

algorithms for constructing approximate matrix decompositions” (2011)
2. Gittens, Mahoney “Revisiting the Nyström method for improved

large-scale machine learning” (2013)
3. Pourkamali “Memory and computation efficient PCA via very sparse

random projections” (2014)
4. Homrighausen, McDonald“On the Nyström and column-sampling

methods for the approximate PCA of large data sets” (2016)

(Of course, there are many other papers not included for brevity’s sake) 11



General problem specifics

Reminder: The matrix X ∈ Rn×p and the vector Y ∈ Rn

We will be concerned with the scenario in which n� p
(This makes sense in the Ebay example as the number of auctions grows much faster

than the vocabulary)

The idea of sketching is define a compression parameter
n� q � p

The procedure is then applied to the sketched/compressed
data
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Typical results
This q parameter needs to be chosen sensibly so that the
induced procedure...

• has “good” statistical properties

• reduces the computational/storage burden

Some examples of “good”:

Least Squares:

A typical result would be to find an β̃ such that

1

2n

∣∣∣∣∣∣Xβ̃ − Y
∣∣∣∣∣∣2

2
≤ (1 + ε)2

(
min
β

1

2n
||Xβ − Y ||22

)
Here, β̃ should be ‘easier’ to compute than β̂
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Typical results
This q parameter needs to be chosen sensibly so that the
induced procedure...

• has “good” statistical properties

• reduces the computational/storage burden

Some examples of “good”:

PCA:

A typical result would be to find an approximate Ṽ such that

angle(V , Ṽ ) ≤
√

p

n

(
1

spectral gap

)
(This is the same order of convergence as PCA [Homrighausen, McDonald (2016)])
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Compressed regression
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Fully compressed regression
Let Q ∈ Rq×n

(The exact form of this matrix will be discussed later. Though the choice of Q is

important, the choice of q is the relevant topic for now)

Let’s look at the fully compressed least squares problem

β̂FC = argmin
β

1

2n
||Q(Xβ − Y )||22

(This is also known as preconditioning)

This is a commonly suggested way of compressing least
squares problems that are either...

- ... very large

- ... or poorly conditioned (typically in these applications,
q = n and QX is a more stable matrix)

(e.g. Boutsidis & Drineas (2009), Mahoney (2011), Drineas et al. (2011), ...)
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Fully compressed regression

There are various ways to analyze β̂FC

We’ve already discussed one:

1

2n

∣∣∣∣∣∣Xβ̂FC − Y
∣∣∣∣∣∣2

2
≤ (1 + ε)2

(
min
β

1

2n
||Xβ − Y ||22

)

Typically need q � p
ε2

(Mahoney (2011))

What about other criteria?
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Fully compressed regression
Instead of comparing the value through the residual sums of
squares, we can compare to the least squares solution itself

β̂LS := argmin
β
||Xβ − Y ||22

For instance, we can compare the predictions made by β̂FC to
those made by β̂LS

1

n

∣∣∣∣∣∣Xβ̂FC − Xβ̂LS
∣∣∣∣∣∣2

2

Let’s suppose that there is a true β∗ such that

Y = Xβ∗ + ε,

where ε is a “nice” stochastic term
(For example, εi are i.i.d Gaussian)
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Fully compressed regression
Under typical assumptions,

1

n

∣∣∣∣∣∣Xβ̂LS − Xβ∗
∣∣∣∣∣∣2

2
=

1

n
||ProjectionXε||

2
2 �

σ2p

n

Combining these two results together, we find that

q � p

ε2
� n

σ2

Conclusion: We must pick q as the same order as n, which
(in an asymptotic order sense) defeats the whole purpose of
compression

So, β̂FC seems like a flawed approach. We can push this even
further..
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Fully compressed regression

Note:

||Q(Xβ − Y )||22 ∝ β>X>Q>QXβ − 2β>X>Q>QY

→ (X>Q>QX)β̂FC = X>Q>QY

We can decompose Rn = col(X)⊕ null(X>)

Two facts immediately follow:

Fact 1: Y = µ + R and P(R ∈ col(X)) = 0

Fact 2: If µ = Xβ∗ for some β∗, then ER = 0
(e.g. if linear model is true)
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Fully compressed regression

Assume: X>Q>QX is invertible

Then
β̂FC = β∗ + (X>Q>QX)−1X>Q>QR

→ β̂FC is unbiased!

Hence, β̂FC is provably worse in a risk sense than β̂LS
(As β̂LS is UMVUE and hence has the same bias but lower variance)

Yet, this is by far the most commonly taken approach in the
approximation literature!
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Partially compressed regression
Instead of:

minβ
(
β>X>Q>QXβ − 2β>X>Q>QY

)
Consider:

minβ
(
β>X>Q>QXβ − 2β>X>Y

)
→ β̂PC = argmin

β

(
β>X>Q>QXβ − 2β>X>Y

)
= (X>Q>QX)−1X>Xβ̂

(Again, under the invertibility assumption)

β̂PC has the “opposite” behavior: high bias, low variance
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Compressed regression

Recap: To do good predictions/estimation, we need to
calibrate bias and variance

We have two estimators

• Low bias/ high variance

• High bias/ low variance

→ Combine them!
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Compressed regression

1. Form the matrix

B =
[
β̂FC , β̂PC

]
∈ Rp×2

2. and compute

α̂ = argmin
α
||Bα− Y ||22

(Can add a convex constraint α1 + α2 = 1)

The estimator: β̂C = Bα̂
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Back to the Q matrix

24



The Q matrix

Example: Let the entries in Q, Qij , to be i.i.d standard
normal

This is attractive as QX is now a Gaussian matrix
(In general, we could assume that Qij are i.i.d sub-Gaussian and control QX via

non-commutative concentration inequalities)

Problem: Finding QX for an arbitrary dense Q and X takes
O(qnp) computations using matrix multiplication

This immediately destroys the advantage of compression as q
must be larger than p

To get this approach to work, we need some structure on Q
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The Q matrix

• Random orthogonal subsampling (e.g. Hadamard, or
Fourier)
(Allows for O(np log(p)) computations)

• Row sampling
(Very easy/fast computationally. However, we should sample proportionate to

the leverage scores, which are expensive to compute)

• Sparse Bernoulli

Qij
i .i .d∼


1 with probability 1/(2s)

0 with probability 1− 1/s

−1 with probability 1/(2s)

This means QX takes O
(
qnp
s

)
“computations”
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Compressed regression

With this Q, β̂C “works” in practice:

• Computational savings: O
(
qnp
s

+ qp2
)

• Approximately the same risk: R(β̂C ) ≈ R(β̂LS)

(Details omitted)

This is good, but we had a realization:

Constrained methods outperform OLS in terms of
risk
(e.g. Hoerl and Kennard (1970))

So, we should seek to compress a constrained least squares
procedure
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Compressed ridge regression

This means introducing a tuning parameter λ and defining:

β̂PC (λ) = (X>Q>QX + λQ>Q)−1X>Y
β̂FC (λ) = (X>Q>QX + λQ>Q)−1X>Q>QY

(Everything else about the procedures is the same)

This has the same computational complexity

Let’s look at a typical result..
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Simulation setup

• Draw Xi ∼ MVN(0, (1− ρ)Ip + ρ11>)

I We use ρ = {0.2, 0.8}.

• Draw β∗ ∼ N(0, τ 2Ip)

• Draw Yi = X>i β∗ + εi with εi ∼ N(0, σ2).

Bayes’ estimator:

• For this model, the optimal estimator (in MSE) is

β̂B = (X>X + λ∗Ip)−1X>Y

• In particular, with λ∗ = σ2

nτ2

(This is the mean/mode of posterior under conjugate normal prior)
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Second simulation. . .

In the previous case, ridge was optimal.

Let’s look at another scenario where β∗ ∈ {−1, 1}p.

32



q = 500 q = 1000 q = 1500

ρ
=

0
.2

ρ
=

0
.8

50 100 250 500 50 100 250 500 50 100 250 500

0.2

0.4

0.6

0.8

1.0

1

2

3

p

o
ra

cl
e

 e
st

im
a

tio
n

 e
rr

o
r

convex linear FC PC ols ridge

33



q = 500 q = 1000 q = 1500

ρ
=

0
.2

ρ
=

0
.8

50 100 250 500 50 100 250 500 50 100 250 500

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

p

%
 b

e
st

 m
e

th
o

d

convex linear FC PC ols ridge

34



Tuning parameter selection
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Setting λ

Now that we introduced a tuning parameter (λ), we need a
way to set it

A resampling-based risk estimate (e.g. some flavor of
cross-validation or bootstrap) wouldn’t work

→ too computationally intensive

So, we use a risk estimate based on degrees of freedom instead
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Setting λ

The degrees of freedom for a generic predictor f is

df(f ) :=
1

σ2

n∑
i=1

Cov(Yi , fi(Y )).

Example: For a linear procedure (e.g.f (Y ) = HY ), we have

df = trace(H) =︸︷︷︸
OLS

rank(X)
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Setting λ

We use GCV with the degrees of freedom:

GCV(λ) =

∣∣∣∣∣∣Xβ̂(λ)− Y
∣∣∣∣∣∣2

2

(1− df/n)2

This requires an estimate of df
(But not of the variance)

This is easy for full or partial compression
(they are linear, after all)

The linear/convex combination is more difficult as they are
nonlinear
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Setting λ

Reminder:

B =
[
β̂FC , β̂PC

]
and α̂ = argmin

α
||Bα− Y ||22

For the linear/convex combination, we can approximate df with

α̂>
[
dfFC
dfPC

]
(This is sometimes done with neural networks, e.g. Ingrassia, S. and Morlini, I. (2007))

This approach has worked well in practice but will
underestimate df

So, we derive an estimate via Stein’s lemma instead..
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Setting λ

An expression for the degrees of freedom can be found via
Stein’s Lemma:

df = E
n∑

i=1

∂Ŷi

∂Yi

(This is the divergence. This result requires normality and almost sure differentiability)

This gives us an unbiased estimator of the degrees of freedom:

d̂f =
n∑

i=1

∂Ŷi

∂Yi
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Theoretical results
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Standard ridge results

Theorem

bias2
(
β̂ridge(λ)|X

)
= λ2β>∗ V (D2 + λIp)−2V>β∗

trace
(
V[β̂ridge(λ)|X]

)
= σ2

p∑
i=1

d2
i

(d2
i + λ)2

.

(Here, we are writing X = UDV> as the SVD)
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Preliminary details

Results conditional on Q are more relevant for analyzing the
β̂’s presented thus far

However, if n� q, then we can still save on computations if
we average a few β̂’s with different draws of Q
(This is similar to classical multiple imputation schemes)

Results unconditional on Q are more relevant in this case

We have theoretical results both conditional on Q & not
(only the unconditional results are stated for brevity)
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Preliminary details
All the estimators depend (theoretically) on Q>Q
(Note: we wouldn’t want to form Q>Q explicitly in practice)

Some properties of Q>Q

E
[
s

q
Q>Q

]
= In

V
[
vec

s

q
Q>Q

]
=

(s − 3)+

q
diag(vecIn) +

1

q
In2 + ...

So the technique is to do a Taylor expansion around

s

q
Q>Q = In
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MSE of Full Compression

Theorem:

bias2[ β̂FC |X] = λ2β>∗ V (D2 + λIp)−2V>β∗ + op(1)

trace(V[ β̂FC |X]) = σ2
p∑

i=1

d2
i

(d2
i + λ)2

+ op(1)

+
(s − 3)+

q
trace

(
diag(vecIn)M>M ⊗ (I − H)Mβ∗β

>
∗ M

>(I − H)
)

+
β>∗ M

>(I − H)2Mβ∗

q
trace(MM>)

+
1

q
trace

(
(I − H)Mβ∗β

>
∗ M

>(I − H)M>M
)
.

Note: M = (X>X + λIp)−1X> and H = XM
(hat matrix for ridge regression)
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Special case

Corollary:
If X>X = nIp,

MSE(β̂ridge) = b2

(
θ

1 + θ

)2

+
pσ2

n(1 + θ)2

MSE(β̂FC ) = b2

(
θ

1 + θ

)2

+
pσ2

n(1 + θ)2
+

b2pθ2(s − 2)+

q(1 + θ)4
+

p2θ2b2

q(1 + θ)4

MSE(β̂PC ) = b2

(
θ

1 + θ

)2

+
pσ2

n(1 + θ)2
+

p(s − 2)+b
2

q(1 + θ)2
+

pb2

q(1 + θ)4

Where b2 := ||β∗||22, and θ := λ/n
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PCA
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Least squares applied to PCA

A similar approach can be applied to the Affine
embedding problem

Find
min

W :rank(W )=k
||X−W ||2F

For PCA:

min
µ,(di ),V∈Sk

n∑
i=1

||Xi − µ− Vdi ||22 = min
(di ),V∈Sk

n∑
i=1

∣∣∣∣Xi − X − Vdi
∣∣∣∣2

2

(Sk is the Stiefel manifold of rank-k orthogonal matrices)
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Conclusion

Thank you listening!
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	Evidence from simulations

