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Woodbury Identity

e \We talked about the Woodbury Identity in class,
which states for A and C' nonsingular,

(A—BC'E) 'BCcl=A"1B(C-EA1B)!

e Applying this identity to Ridge Regression, we saw
Brigge = XIX+ AN X'Y =x(xx! + AD"Y

e T his results in the inversion of an n X n matrix as
opposed to a p x p matrix, which can be much less
expensive in terms of computation time in the big
data setting.



Discovering Matrix Inverse Formulas

e Once a matrix inverse formula is known, it is easy
to check that it is true: we just multiply the two
matrices together to verify that the result is the
Identity Matrix.

e However, discovering the formulas is a much more
difficult task.

e Many matrix inverse formulas were discovered by
using partitioned (block) matrices.



e Note the following identity for A nonsingular:
Al ol |lA U| |1 A~1lU
~vVA~L I||V D|

0 D-VA-lU
e Using the above equation, we see:
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e [ his leads us to the conclusion that inverting a par-
titioned matrix leads to inverting the sum of two
matrices.

e [ here are many versions of the previous equation,
depending on which matrices we require to be non-
singular. For example, here is another version where
A, B,U, and V are all nonsingular:

A U™t [(A—uD vyl (v — pUu-14)-1
V. D T |{(U-Av~iD)y"t (D-vaA~lU)~?



Linear Mixed Models

e Consider the linear mixed model,

Y = X384+ Zu+ e,

where u has dispersion matrix D, independent of €
which has dispersion matrix R.

e This results in Y having the expected value of X3
and covariance matrix (R+ ZDZz1).

e To find the least squares estimate of 3, we must
invert (R+2ZDZ1), an n x n matrix that often does
not have a nice structure(it’'s normally large and
nondiagonal).



e However, the Henderson equations give us
(R+zDz"Y 1 =Rr 1-r1z(ZTR1Zz4+D ) 12TR 1,

which requires us to invert R, and n xn matrix that
often has a nice structure, D, a g X ¢ matrix, and
(ZT'R=1Z + D~ 1), which is a ¢ x ¢ matrix.

e Depending on the size of n and g and the structure
of D and R, we can choose the formula for 3 which
minimizes computation time.



Other Applications

e Intraclass correlation matrices

e Factor analysis

e Discriminant analysis

e Maximum likelihood estimation of variance compo-
nents
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