
Nonlinear Embeddings
-Statistical Machine Learning-

Lecturer: Darren Homrighausen, PhD

1

Lower dimesional (metric) embeddings

Spectral connectivity analysis (SCA) is a general process for finding
lower dimensional structure in the data

It can be...

• Linear or nonlinear

• Used for dimension reduction or feature creation

• PCA, Fisher discriminant analysis, Locally linear embeddings,
Hessian eigenmaps, Laplacian eigenmaps, kernel PCA

• Useful as an input to classification, clustering, and regression
approaches

Let’s take one last look at PCA before proceding

2

When PCA Works Well
PCA can do effective dimension reduction (that is, explain most of
the data with m < p components) as long as the data can be
efficiently represented as ‘lines’ (or planes, or hyperplanes). So, in
two dimensions:

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

●

●
●

●●
●●●●

●●
●●

●●●●
●●

●
●●●

●●●●●
●●●●●●●

●●●●
●●●●●

●●●●
●●●●●●●●

●●●●
●●●●●●●●

●●●●●
●●●●

●●●●●
●●●

●●●
●●●●●

●
●●

●
●●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

3

When PCA doesn’t work well

What about other data structures? Again in two dimensions

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
● ● ●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

●●● ● ● ●
●

●
●

●
●

●
●

●
● ● ● ●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●● ●

●
●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

Here, we have failed miserably.

4

Explanation

• PCA wants to minimize distances (equivalently maximize
variance). This means it slices through the data at the
meatiest point, and then the next one, and so on. If the data
are ‘curved’ this is going to induce artifacts.
• PCA also looks at things as being close if they are near each

other in a Euclidean sense
[this is essentially all covariance is].
• On the spiral, our intuition says that things are ‘close’ only if

the distance is constrained to go along the curve. In other
words, purple and blue are close, blue and red are not.

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
● ● ●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

5

PCA and covariance

PCA: Find the directions of greatest variance. This doesn’t on its
face seem like it maintains correlations, but observe:

var([a, b]>X) = var(ax1+bx2) = a2Var(x1)+b2Var(x2)+2abCov(x1, x2)

If we standardize the matrix, then this reduces to

var(ax1 + bx2) = a2 + b2 + 2abCov(x1, x2)

This gets maximized over a2 + b2 = 1.

• If Cov(x1, x2) ≈ 0, then this gets maximized by any
a2 + b2 = 1 (it doesn’t matter)

• If Cov(x1, x2) ≈ 1, then this gets maximized by setting
a = b = 1/

√
2

So, in either case, we are really maintaining correlations

Correlation is fundamentally a linear phenomenon

6

Graphical example of the phenomenon
library(mvtnorm)

sigma = matrix(c(1,sig,sig,1),nrow=2)

nsweep = 1000

outcome = matrix(0,nrow=nsweep,ncol=2)

for(sweep in 1:nsweep){

x = rmvnorm(200,c(0,0),sigma)

out.pca = prcomp(x,center=T,scale=F)

outcome[sweep,] = out.pca$rotation[,1]

}

plot(outcome,xlab=’PC1’,ylab=’PC2’)

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PC1

P
C

2

●●

●

●●●●

●

●●

●●

●

●●●●

●

●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●●

●●●

●●

●

●●●●

●●●

●●

●●●●●

●

●

●●●●●

●●●●

●●

●●●

●

●●●

●

●●●●

●

●

●●●●●

●

●

●

●

●●

●

●

●●●

●

●●●●●

●

●●●●●

●

●●

●●●●●

●

●●

●●●

●●

●

●

●

●●●●●●●

●●

●

●●●

●●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●

●●●

●●

●●

●●●

●●●●

●

●

●

●

●●●

●●●●●

●●

●●●●

●

●

●

●

●

●

●●●●

●

●●

●●

●●●●●●

●

●

●

●●●●

●●

●●

●

●

●●●

●●

●

●

●

●●

●

●

●●●●●●

●●●

●

●

●

●●

●●

●●

●●

●

●

●●●

●●●●●●

●●

●

●

●

●●

●●

●●●

●●●

●●●

●

●●●●●●

●●●●●●

●

●

●

●

●

●●

●●

●●●●●●●

●

●●●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●●

●

●●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●●●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●●

●●●●

●

●●●

●●●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●●●●

●

●

●●●●

●

●●●

●

●●

●●

●●

●●

●

●

●

●●●●●

●●●

●

●

●

●

●●●●●●●

●

●

●

●

●●

●●●

●

●●●●●

●

●

●●●

●●

●

●

●

●●●●●●

●

●

●●

●●●

●●

●●

●●●●

●

●

●

●●●●●●

●

●

●●●

●●●

●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●

●●●●●●

●

●

●

●

●●

●

●●

●●●

●●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●

●●

●

●●●●

●●●●

●●●●

●●

●

●●

●

●

●●●

●●

●●●●●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●●

●

●●

●●●

●

●

●●●

●●●

●●●●●

●

●●●

●●

●●

●

●●

●

●●●

●●●●●●

●●●●

●

●

●

●●●

●●

●

●●●

●

●●●●

●

●●

●●

●

●●●

●●●

●

●

●

●●

●●●

●

●●

●

●●●

●

●●●●

●●●

●●●

●

●

●●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●●●

●●

●

●

●

●

●

●●

●●

●●●●●●

●

●

●●

●

●●

●

●

●●●

●

●●●●

●●

●

●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●●●●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●

●●

●●●

●

●●●

●

●

●

●●●●●

●

●

●●

●

●

●

●●

●

●●●

●

●●●●●●●●

●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●●

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

PC1

P
C

2

Figure: Left: sig = 0. Right: sig = .999
7

Nonlinear embeddings

8

Kernel PCA (KPCA)

Classical PCA comes from X̃ = X−MX = UDV>, where
M = 11>/n and 1 = (1, 1, . . . , 1)>

However, we can just as easily get it from the outer product

K = X̃X̃> = (I −M)XX>(I −M) = UD2U>

The intuition behind KPCA is that K is an expansion into a kernel
space, where

Ki ,i ′ = k(X̃i , X̃i ′) = 〈X̃i , X̃i ′〉

Reminder: Anytime we see an inner product, we can kernelize it

9

Kernel PCA

Following this intuition, the approach is simple:

1. Specify a kernel k
(e.g. k(X ,X ′) = exp{−γ−1 ||X − X ′||22})

2. Form Ki ,i ′ = k(Xi ,Xi ′)

3. Standardize and get eigenvector decomposition

K = (I −M)K (I −M) = UD2U>

This implicitly finds the inner product:

k(Xi ,Xi ′) = 〈φ(Xi), φ(Xi ′)〉

However, we need only specify the kernel

10

Kernel PCA

The scores are still Z = UD

The qth KPCA score is (up to centering)

Ziq =
n∑

i ′=1

βi ′qk(Xi ,Xi ′)

where βi ′,q = ui ′q/dq

Note: As we don’t explicitly generate the feature map, there are
no loadings

11

Small detour

12

Reproducing kernel Hilbert space
Reminder: Mercer’s theorem assures us that

k(X ,X ′) =
∞∑
j=1

θjφj(X)φj(X
′)

Here, the system (φj)
∞
j=1 spans a space Hk

The function space Hk is known as a reproducing kernel Hilbert
space (RKHS)

It can also be thought of as roughly

Hk = {f : f (X) =
n∑

i=1

βik(X ,Xi)}

Which has a special inner product

〈f , f 〉Hk
= ||f ||2Hk

=
∞∑
j=1

f 2
j /θj <∞

13

Reproducing kernel Hilbert space
Writing

f (X) =
n∑

i=1

βik(X ,Xi)

The terms k(X ,Xi) are the representers, as

〈k(·,X), f 〉Hk
= f (X)

and Hk is called a reproducing kernel Hilbert space (RKHS) as

〈k(·,X), k(·,X ′)〉Hk
= k(X ,X ′)

Note: For kernel methods, we are generalizing the finite
dimensional Euclidean inner product

〈X ,X ′〉 = X>X ′

14

Kernel methods via regularization

After specifying a kernel function k, we can define an estimator via

min
f ∈Hk

P̂`f + λ ||f ||2Hk

This is a (potentially) infinite dimensional optimization problem
(hard, especially with a computer)

It can be shown that the solution has the form

f̂ (X) =
n∑

i=1

βik(X ,Xi)

(This is known as the representer theorem)

15

Back to KPCA

16

Kernel PCA
Reminder: To get the first PC in classical PCA, we want to solve

max
α

Vα>X subject to ||α||22 = 1

Translate this into the kernel setting, and we are trying to solve

max
g∈Hk

Vg(X) subject to ||g ||Hk
= 1

The representer theorem states that a solution to this problem is

ĝ(X) =
n∑

i=1

βik(X ,Xi)

Compare

Ziq =
n∑

i ′=1

βi ′qk(Xi ,Xi ′)

where βi ′,q = ui ′q/dq
17

KPCA: some results

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
● ● ●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

●●● ● ● ●
●

●
●

●
●

●
●

●
● ● ● ●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●● ●

●
●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

18

KPCA: some results

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
● ● ●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

●●● ● ● ●
●

●
●

●
●

●
●

●
● ● ● ●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●● ●

●
●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

Data PCA

●●●●●●●●●●●●●●●●
●●●
●●●●●●●

●
●

●
●

●●●●●●
●

●
●
●
●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

3.25e+08 3.30e+08 3.35e+08 3.40e+08

−
15

00
0

−
10

00
0

−
50

00
0

50
00

10
00

0
15

00
0

PC1

P
C

2

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
● ● ●●●●●●●●●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●

2490 2500 2510 2520 2530 2540

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

PC1

P
C

2

KPCA: polynomial(2) KPCA: gaussian(10) 19

Semisupervised learning in practice

Looking at:

Ziq =
n∑

i ′=1

βi ′qk(Xi ,Xi ′)

this is only defined at our observed features

Write

• Dtrain = {(X1,Y1), . . . , (Xn,Yn)}
• Dtest = {(X ∗1 ,Y ∗1), . . . , (X ∗n∗ ,Y

∗
n∗)}

Two common scenarios are

1. We are given Dtrain and X ∗1 , . . . ,X
∗
n∗ to build f̂

2. We are given only Dtrain to build f̂

20

Case 1

We are given Dtrain and X ∗1 , . . . ,X
∗
n∗ to build f̂

Then we can just use straight forward KPCA
(Or any unsupervised learning step)

1. Form K on Dtrain and X ∗1 , . . . ,X
∗
n∗

2. Get UD

3. Pass Zq = UD[, 1 : q] to train f̂

4. Get Ŷ = f̂ (Zq)

21

Case 2
We are given only Dtrain to build f̂

Now, we don’t know the coordinates of X ∗1 , . . . ,X
∗
n∗ in the

representation space

To get a new observation X ∗ embedded into this representation:

Z0 = D−1U>(I −M)[k∗ − K1/n]

where k∗ = [k(X ∗,X1), . . . , k(X ∗,Xn)]>

Then we compute:

1. Form K on Dtrain

2. Get UD

3. Pass Zq = UD[, 1 : q] to train f̂

4. Form Z ∗q for all X ∗1 , . . . ,X
∗
n∗

5. Get Ŷtest = f̂ (Z ∗q)

22

KPCA: summary

Kernel PCA seeks to generalize the notion of similarity using a
kernel map

This can be interpreted as finding smooth, orthogonal directions in
a RKHS

This can allow us to start picking up nonlinear (in the original
feature space) aspects of our data

This new representation can be passed to a supervised method to
form a semisupervised learner

23

Laplacian Eigenmaps

In order to use the intuitive distance, we need to know the
geometry of the data. This needs to be estimated.

We can get an estimate of the distance in the unknown geometry
that the data come from (known as a manifold) by altering the
usual Euclidean distance.

Some notes:

• The name Laplacian Eigenmaps comes from getting the
eigenvector decomposition of the Laplacian restricted to the
manifold (which is the second derivative version of the
gradient).

• If the manifold is smooth, then local Euclidean distance is an
approximation to the distance on the manifold.

24

What is a manifold?
How good of an approximation is Euclidean distance?

This question is equivalent to how asking: how quickly does the
tangent (space) change?

In 1-D, the tangent space is just the first derivative at that point:

f (x) = x2 ⇒ f ′(x) = 2x .

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

25

What is a Manifold?

Therefore, the quality of the (local) Euclidean distance, depends
on the second derivative
(ie: how fast does the first derivative change?)

In higher dimensions, the second derivative is known as the
Laplacian: ∑

j

∂2f

∂x2
j

(Note: This is also known as the divergence of the gradient)

26

What are Laplacian Eigenmaps, then?

Imagine the operator L that performs this operation:

Lf =
∑
j

∂2f

∂x2
j

Then L is the Laplacian, mapping a function to the divergence of
its gradient

Key Idea: We can get the eigenvectors/eigenvalues of L.
Analogously to PCA, we can now do inference with
these eigenvectors.

Note: There is a substantial overlap with KPCA, the difference
being the centering of K and the row sum versus column sum
normalization

27

Laplacian Eigenmaps

Collect data: X1, . . . ,Xn where Xi ∈ Rp.

1. Form the distance matrix ∆ij = ||Xi − Xj ||22.

2. Compute

K = exp

(
−∆

γ

)
3. Form the Laplacian L = I−M−1K,

M = diag(rowSums(K))

4. Compute the spectrum: L = UΣU>.

5. Return Ud , where Ud corresponds to the smallest d
(nontrivial) eigenvalues of L
(Note that the eigenvectors of L and M−1K are the same but the order of the

eigenvalues are reversed)

28

Deeper investigation

1. Form the distance matrix ∆.

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
● ● ●

−15 −10 −5 0 5 10

−
15

−
10

−
5

0
5

10

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure: If we think about the center as 0 and the last blue circle as 1,
then each entry the plot on the Right is the Euclidean distance between
each data point on the plot on the Left (that is, ∆). The color on the
Right plot goes from purple (small distance) to beige/pink (large
distance).

29

Deeper investigation

Delta = as.matrix(dist(X,diag=TRUE,upper=TRUE))

image(Delta,col=topo.colors(10))

30

Deeper investigation

2. Exponentiate −∆/γ to form K for some fixed γ.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure: The Left plot is ∆ and the Right plot is K for γ = 0.95.

31

Deeper investigation

gamma = 0.95

Wgamma = exp(-Delta/gamma)

image(Wgamma,col=topo.colors(10))

32

Spiral in R3

−20 −15 −10 −5 0 5 10 15

 0
 5

10
15

20
25

30

−6

−4

−2

 0

 2

 4

 6

 8

X[,1]

X
[,2

]

X
[,3

]

●●
●

●
●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●
●

●●●●●●●●●
●●●

●
●

●

●

●

●

●

●

●

●

−0.20 −0.15 −0.10 −0.05 0.00 0.05
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

eigenvector 2

ei
ge

nv
ec

to
r

3

●●● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ●

−0.05 0.00 0.05 0.10 0.15 0.20 0.25

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

eigenvector 2

Original data 1st & 2nd nontrivial eigenvectors 1-dimensional

33

Local Euclidean distance approximates the
geodesic

The red line is the local Euclidean path between the two points,
while the blue line is the path along the manifold.

James, Witten, Hastie, Tibshirani (2013)

34

