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Neural networks: General form

Generalizing to multi-layer neural networks, we can specify any
number of hidden units:
(I’m eliminating the bias term for simplicity)

0 Layer : = σ(α>lowestX )

1 Layer: = σ(α>lowest+1(0 Layer))

...

Top Layer : = σ(α>Top(Top - 1 Layer))

L(µg (X )) = βg0 + β>g (Top Layer) (g=1,...G)
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Neural networks: General form

Some comments on adding layers:

• It has been shown that one hidden layer is sufficient to
approximate any piecewise continuous function
(However, this may take a huge number of hidden units (i.e. K >> 1))

• By including multiple layers, we can have fewer hidden
units per layer. Also, we can encode (in)dependencies
that can speed computations
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Returning to Doppler function
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Neural networks: Example
We can try to fit it with a single layer NN with different levels
of hidden units K

A notable difference with B-splines is that ‘wiggliness’ doesn’t
necessarily increase with K due to regularization

Some specifics:

• I used the R package neuralnet
(This uses the resilient backpropagation version of the gradient descent)

• I regularized via a stopping criterion (||∂`||∞ < 0.01)

• I did 3 replications
(This means I did three starting values and then averaged the results)

• The layers and hidden units are specified like

(# Hidden Units on Layer 1) (# Hidden Units on Layer 2)...
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Neural networks: Example
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Figure: Single layer NN vs. B-splines
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Neural networks: Risk

What’s the estimation equality? MSE = E(f̂ (X )− f∗(X ))2
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Figure: 3 layer NN1 vs. B-splines

1The numbers mean (#(layer 1) #(layer 2) #(layer 3))
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Neural networks: Example
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Neural networks: Code for Example

trainingdata = cbind(x,Y)

colnames(trainingdata) = c("Input","Output")

testdata = xTest

require("neuralnet")

K = c(10,5,15)

nRep = 3

nn.out = neuralnet(Output~Input,trainingdata,

hidden=K, threshold=0.01,

rep=nRep)

nn.results = matrix(0,nrow=length(testdata),ncol=nRep)

for(reps in 1:nRep){

pred.obj = compute(nn.out, testdata,rep=reps)

nn.results[,reps] = pred.obj$net.result

}

Yhat = apply(nn.results,1,mean)
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Hierarchical view
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Hierarchical view

Figure: Recall: Single hidden layer neural network. Note the
similarity to latent factor models
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Hierarchical from example
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This is a directed acyclic graph (DAG)

nn.out = neuralnet(Output~Input,trainingdata,

hidden=c(3,4))

plot(nn.out)
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Neural networks: Localization

One of the main curses/benefits of neural networks is the
ability to localize

This makes neural networks very customizable, but commits
the data analyst to intensively examining the data

Suppose we are using 1 input and we want to restrict the
implicit DAG
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Neural networks: Localization
That is, we might want to constrain some of the weights to 0

35.43394

18.17354

Input

−17.97064

3.
26

63
6

4.59638

−1.08983

−4.39067

−10.47973

Output

−4.08848

−5.20276

1

8.45574

−2.29281

1

5.9189

1

Error: 3.137653   Steps: 49829

Figure: Unconstrained neural network

nn.out = neuralnet(Output~Input,trainingdata,

hidden=c(2,2)) 14



Neural networks: Localization
We can do this in neuralnet via the exclude parameter

To use it, do the following:

exclude = matrix(1,nrow=2,ncol=3)

exclude[1,] = c(2,2,2)

exclude[2,] = c(2,3,1)

nn.out = neuralnet(Output~Input,trainingdata,

hidden=c(2,2), threshold=0.01,

exclude=exclude)

exclude is a E × 3 matrix, with E the number of exclusions

• first column stands for the layer

• the second column for the input neuron

• the third column for the output neuron
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Neural networks: Localization
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Neural networks: Crime data

M

percentage of males aged 1424.

So

indicator variable for a Southern state.

Ed

mean years of schooling.

Po1

police expenditure in 1960.

LF

labour force participation rate.

M.F

number of males per 1000 females.

...

y

rate of crimes in a particular category per capita
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Neural networks: Crime data
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Neural networks: Crime data

We may want to constrain the neural network to have neurons
specifically about

• Demographic variables

• Police expenditure

• Economics

This type of prior information can be encoded via exclude
(This is, in my opinion, when neural networks work well)
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Tuning parameters
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Neural networks: Tuning parameters

The most common recommendation I’ve seen is to take the 3
tuning parameters: The number of hidden units, the number
of layers, and the regularization parameter λ
(or a stopping criterion λ for the iterative solver)

Either choose λ = 0 and use risk estimation to choose the
number of hidden units
(This could be quite computationally intensive as we would need a reasonable 2-d grid

over units × layers)

Or, fix a large number of layers and hidden units and choose λ
via risk estimation
(This is the preferred method)
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Neural networks: Tuning parameters

We can use a GIC method:

AIC = training error + 2d̂f σ̂2

(This is reported by neuralnet, by setting likelihood = T)

Or via cross-validation
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Neural networks: Tuning parameters

Unfortunately, neuralnet provides a somewhat bogus measure
of AIC/BIC

Here is the relevant part of the code

if (likelihood) {

synapse.count = length(weights) - length(exclude)

aic = 2 * error + (2 * synapse.count)

bic = 2 * error + log(nrow(response))*synapse.count

}

They use the number of parameters for the degrees of
freedom!
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