
Neural Networks and Deep

Learning 2
-Statistical Learning and Data Mining-

Lecturer: Darren Homrighausen, PhD

1

Neural networks: General form

Generalizing to multi-layer neural networks, we can specify any
number of hidden units:
(I’m eliminating the bias term for simplicity)

0 Layer : = σ(α>lowestX)

1 Layer: = σ(α>lowest+1(0 Layer))

...

Top Layer : = σ(α>Top(Top - 1 Layer))

L(µg (X)) = βg0 + β>g (Top Layer) (g=1,...G)

2

Neural networks: General form

Some comments on adding layers:

• It has been shown that one hidden layer is sufficient to
approximate any piecewise continuous function
(However, this may take a huge number of hidden units (i.e. K >> 1))

• By including multiple layers, we can have fewer hidden
units per layer. Also, we can encode (in)dependencies
that can speed computations

3

Returning to Doppler function

4

Neural networks: Example
We can try to fit it with a single layer NN with different levels
of hidden units K

A notable difference with B-splines is that ‘wiggliness’ doesn’t
necessarily increase with K due to regularization

Some specifics:

• I used the R package neuralnet
(This uses the resilient backpropagation version of the gradient descent)

• I regularized via a stopping criterion (||∂`||∞ < 0.01)

• I did 3 replications
(This means I did three starting values and then averaged the results)

• The layers and hidden units are specified like

(# Hidden Units on Layer 1) (# Hidden Units on Layer 2)...

5

Neural networks: Example

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●
●
●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●
●

●

●

●●

●
●●

●
●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●
●●

●●●

●●

●
●
●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

trainingdata$Input

tr
ai

ni
ng

da
ta

$O
ut

pu
t

1 = #Hidden
3 = #Hidden
5 = #Hidden
10 = #Hidden

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●
●●
●

●
●

●

●
●●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●●

●

●

●
●●

●●

●

●●●●

●
●
●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●●

0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Y

K = 3
K = 5
K = 10
K = 25
K = 50
K = 100

Figure: Single layer NN vs. B-splines

6

Neural networks: Risk

What’s the estimation equality? MSE = E(f̂ (X)− f∗(X))2

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

IM
S

E

5
5

5
5

5
10

5
5

15
5

10
 5

5
10

 1
0

5
10

 1
5

5
15

 5
5

15
 1

0
5

15
 1

5
10

 5
 5

10
 5

 1
0

10
 5

 1
5

10
 1

0
5

10
 1

0
10

10
 1

0
15

10
 1

5
5

10
 1

5
10

10
 1

5
15

15
 5

 5
15

 5
 1

0
15

 5
 1

5
15

 1
0

5
15

 1
0

10
15

 1
0

15
15

 1
5

5
15

 1
5

10
15

 1
5

15 20 40 60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

tuning parameter

IM
S

E

Figure: 3 layer NN1 vs. B-splines

1The numbers mean (#(layer 1) #(layer 2) #(layer 3))
7

Neural networks: Example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●
●
●●
●

●
●

●

●
●

●

●

●

●

●●●

●
●

●

●●

●●

●●
●

●
●

●
●●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●●
●
●

●

●●●

●

●●

●

●●
●

●

●

●
●

●

●
●●
●

●●
●
●

●●

●
●
●

●

●●●
●

●

●
●●

●
●
●

●

●

●

●

●
●●

●

●
●●

●●●
●●

●

●
●

●
●

●

●

●●●

●●
●

●●

●●

●●
●

●
●

●
●●

●

0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Y

5 15 10
10 10 10
15 15 10
Opt. Spline

Figure: Optimal NNs vs. Optimal B-spline fit

8

Neural networks: Code for Example

trainingdata = cbind(x,Y)

colnames(trainingdata) = c("Input","Output")

testdata = xTest

require("neuralnet")

K = c(10,5,15)

nRep = 3

nn.out = neuralnet(Output~Input,trainingdata,

hidden=K, threshold=0.01,

rep=nRep)

nn.results = matrix(0,nrow=length(testdata),ncol=nRep)

for(reps in 1:nRep){

pred.obj = compute(nn.out, testdata,rep=reps)

nn.results[,reps] = pred.obj$net.result

}

Yhat = apply(nn.results,1,mean)
9

Hierarchical view

10

Hierarchical view

Figure: Recall: Single hidden layer neural network. Note the
similarity to latent factor models

11

Hierarchical from example

40.62811

−14.32349

20
.0

32
99

Input

0.65035

1.74476

−0
.5

64
5

26
.0

62
84

19.60804

25.95779

−12.7601

−2
2.

03
33

2

−14.01513
−26.30627

1.21302

0.67344

1.
14

69
3

1.03355

2.72678

1.32432

Output

−4.07963
2.54002

−2.529

1

−1.23878
−2.17694

0.26043

−1.3775

1

−2.31201

1

Error: 3.779386 Steps: 3425

This is a directed acyclic graph (DAG)

nn.out = neuralnet(Output~Input,trainingdata,

hidden=c(3,4))

plot(nn.out)
12

Neural networks: Localization

One of the main curses/benefits of neural networks is the
ability to localize

This makes neural networks very customizable, but commits
the data analyst to intensively examining the data

Suppose we are using 1 input and we want to restrict the
implicit DAG

13

Neural networks: Localization
That is, we might want to constrain some of the weights to 0

35.43394

18.17354

Input

−17.97064

3.
26

63
6

4.59638

−1.08983

−4.39067

−10.47973

Output

−4.08848

−5.20276

1

8.45574

−2.29281

1

5.9189

1

Error: 3.137653 Steps: 49829

Figure: Unconstrained neural network

nn.out = neuralnet(Output~Input,trainingdata,

hidden=c(2,2)) 14

Neural networks: Localization
We can do this in neuralnet via the exclude parameter

To use it, do the following:

exclude = matrix(1,nrow=2,ncol=3)

exclude[1,] = c(2,2,2)

exclude[2,] = c(2,3,1)

nn.out = neuralnet(Output~Input,trainingdata,

hidden=c(2,2), threshold=0.01,

exclude=exclude)

exclude is a E × 3 matrix, with E the number of exclusions

• first column stands for the layer

• the second column for the input neuron

• the third column for the output neuron

15

Neural networks: Localization

35.43394

18.17354

Input

−17.97064

3.
26

63
6

4.59638

−1.08983

−4.39067

−10.47973

Output

−4.08848

−5.20276

1

8.45574

−2.29281

1

5.9189

1

Error: 3.137653 Steps: 49829

−33.85341

−7.76961

Input

−225.82367

N
A

N
A

7.11399

−4.29472

−12.7366

Output
0.80414

3.28123

1

0.96075

−7.42152

1

4.0761
1

Error: 5.347554 Steps: 26558

Figure: Not-constrained vs. constrained

16

Neural networks: Crime data

M

percentage of males aged 1424.

So

indicator variable for a Southern state.

Ed

mean years of schooling.

Po1

police expenditure in 1960.

LF

labour force participation rate.

M.F

number of males per 1000 females.

...

y

rate of crimes in a particular category per capita

17

Neural networks: Crime data

−1
.0

18
63

−0
.2

84
38

Time

−0
.2

05
99

−0
.5

31
47

Prob

0.18995

−0
.0

04
91

Ineq

−0.20699

−0
.4

95
63

GDP

1.76105

2.
70

12
7

U2

−2.58973

0.
10

16
4

U1

−1.27434

0.
42

39
5

NW

3.3054

−1.37927

Pop

1.21354

1.59686

M.F

0.71896

0.44088
LF

0.58557

0.22592Po2

0.81383

0.79644

Po1

1.87085

−0.55619

Ed

0.18337
1.02985

So

1.20285
0.08998

M

13.10335
12

.1
65

79

12.48219

11.96604

301.4222

301.53858

y

−1.16611

−1.26095

1

11.27726

12.74632

1

302.12447

1

18

Neural networks: Crime data

We may want to constrain the neural network to have neurons
specifically about

• Demographic variables

• Police expenditure

• Economics

This type of prior information can be encoded via exclude
(This is, in my opinion, when neural networks work well)

19

Tuning parameters

20

Neural networks: Tuning parameters

The most common recommendation I’ve seen is to take the 3
tuning parameters: The number of hidden units, the number
of layers, and the regularization parameter λ
(or a stopping criterion λ for the iterative solver)

Either choose λ = 0 and use risk estimation to choose the
number of hidden units
(This could be quite computationally intensive as we would need a reasonable 2-d grid

over units × layers)

Or, fix a large number of layers and hidden units and choose λ
via risk estimation
(This is the preferred method)

21

Neural networks: Tuning parameters

We can use a GIC method:

AIC = training error + 2d̂f σ̂2

(This is reported by neuralnet, by setting likelihood = T)

Or via cross-validation

22

Neural networks: Tuning parameters

Unfortunately, neuralnet provides a somewhat bogus measure
of AIC/BIC

Here is the relevant part of the code

if (likelihood) {

synapse.count = length(weights) - length(exclude)

aic = 2 * error + (2 * synapse.count)

bic = 2 * error + log(nrow(response))*synapse.count

}

They use the number of parameters for the degrees of
freedom!

23

