
Neural Networks and Deep

Learning
-Statistical Machine Learning-

Lecturer: Darren Homrighausen, PhD

1



Overview

Neural networks are models for supervised learning

Linear combinations of features are passed through a
non-linear transformation in successive layers

At the top layer, the resulting latent factors are fed into an
algorithm for predictions
(Most commonly via least squares or logistic regression)

(Chapter 11 in ESL is a good introductory reference for neural networks)

2



Background

3



Background

Neural networks have come about in 3 “waves” of research

The first was an attempt to model the mechanics of the
human brain

Through psychological and anatomical experimentation, it
appeared the brain worked by

• taking atomic units known as neurons, which can either
be “on” or “off”

• putting them in networks with each other, where the
signal is given by which neurons are “on” at a given time

Crucially, a neuron itself interprets the status of other neurons

4



Background

After the development of parallel, distributed computation in
the 1980s, the artificial intelligence view was diminished

Neural networks became popular machine learning approaches

Among the growing popularity of SVMs and boosting/bagging
in the late 1990s, neural networks again fell out of favor

This was due to many of the problems we’ll discuss (non
convexity being the main one)

5



Background

In the mid 2000’s, new approaches for initializing neural
networks became available

These approaches are collectively known as deep learning

Together, some state-of-the-art performance on various
classification tasks have been accomplished via neural networks

6



High level overview

7



High level overview

Figure: Single hidden layer neural network. Note the similarity to
latent factor models

8



Nonparametric regression

Suppose Y ∈ R and we are trying to nonparametrically fit the
regression function

EY |X = f∗(X )

A common approach (particularly when p is small) is to
specify

• A fixed basis, (φk)∞k=1

• A tuning parameter K

9



Nonparametric regression
We follow this prescription:

1. Write1

f∗(X ) =
∞∑
k=1

βkφk(x)

where βk = 〈f∗, φk〉
2. Truncate this expansion2 at K

f K∗ (X ) =
K∑

k=1

βkφk(x)

3. Estimate βk with least squares
1Technically, f∗ might not be in the span of the basis, in which case

we have incurred an irreducible approximation error. Here, I’ll just write
f∗ as the projection of f∗ onto that span

2Often higher k are more rough ⇒ this is a smoothness assumption
10



Nonparametric regression: Example

x = seq(.05,1,length=200)

Y = sin(1/x) + rnorm(100,0,.1)

plot(x,Y)

xTest = seq(.05,1,length=1000)

lines(xTest,sin(1/xTest),col=’black’,lwd=2,lty=2)

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●●●

●
●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●●●●
●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●●

●

●
●
●

●●

●

●

●

●

●
●

●

●●●

●
●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Y

11



Nonparametric regression: Example

require(splines)

X = bs(x,df=20)

plot(x,Y)

lines(xTest,sin(1/xTest),col=’black’,lwd=2,lty=2)

matlines(x=x,X,lty=2,type=’l’,col=’blue’)

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●●●

●
●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●●●●
●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●●

●

●
●
●

●●

●

●

●

●

●
●

●

●●●

●
●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Y

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●●●

●
●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●●●●
●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●●

●

●
●
●

●●

●

●

●

●

●
●

●

●●●

●
●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Y

12



Nonparametric regression: Example

require(splines)

X = bs(x,df=K)

Yhat = predict(lm(Y~.,data=X))

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●
●●
●

●
●

●

●
●●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●●

●

●

●
●●

●●

●

●●●●

●
●
●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●●

0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Y

K = 3
K = 5
K = 10
K = 25
K = 50
K = 100

13



Nonparametric regression

The weaknesses of this approach are:

• The basis is fixed and independent of the data

• If p is large, then nonparametrics doesn’t work well at all
(See previous discussion on curse of dimensionality)

• If the basis doesn’t ‘agree’ with f∗, then K will have to be
large to capture the structure

• What if parts of f∗ have substantially different structure?

An alternative would be to have the data tell us what kind of
basis to use

14



High level overview
Let µ(X ) = EY |X

Write L as the link function

A basic3 neural network can be phrased

L(µ(X )) = β0 +
K∑

k=1

βkσ(αk0 + α>k X )

Compare: A nonparametric GLM would have the form

L(µ(X )) = β0 +
K∑

k=1

βkφk(X )

3Here basic indicates that there are much more complex versions, not
that neural networks are simple in any way

15



Neural networks: Definitions

L(µ(X )) = β0 +
K∑

k=1

βkσ(αk0 + α>k X )

The main components are

• The derived features Zk = σ(αk0 + α>k X ) and are called
the hidden units

I The function σ is called the activation function and is
very often σ(u) = (1 + e−u)−1

(This particular σ(u) is known as the sigmoid function)

I The parameters β0, βk , αk0, αk are estimated from the
data.

• The number of hidden units K is a tuning parameter

16



High level overview

Example: If L(µ) = µ, then we are doing regression:

µ(X ) = β0 +
K∑

k=1

βkσ

(
αk0 +

p∑
j=1

αkjxj

)

but in a transformed space

Two observations:

• The σ function generates a feature map

• If σ(u) = u, then neural networks reduce to classic least
squares

Let’s discuss each of these..

17



Observation 1: Feature map
We start with p covariates

We generate K features

Example: GLMs with a feature transformation

Φ(X ) = (1, x1, x2, . . . , xp, x
2
1 , x

2
2 , . . . , x

2
p , x1x2, . . . , xp−1xp) ∈ RK

= (φ1(X ), . . . , φK (X ))

Before feature map:

L(µ(X )) = β0 +

p∑
j=1

βjxj

After feature map:

L(µ(X )) = β>Φ(X ) =
K∑

k=1

βkφk(X )

18



Observation 1: Feature map

For neural networks write:

Zk = σ

(
αk0 +

p∑
j=1

αkjxj

)
= σ

(
αk0 + α>k X

)
Then we have

Φ(X ) = (1,Z1, . . . ,ZK )> ∈ RK+1

and

µ(X ) = β>Φ(X ) = β0 +
K∑

k=1

βkσ

(
αk0 +

p∑
j=1

αkjxj

)

19



Observation 2: Activation function
If σ(u) = u is linear, then we recover classical methods

L(µ(X )) = β0 +
K∑

k=1

βkσ(αk0 + α>k X )

= β0 +
K∑

k=1

βk(αk0 + α>k X )

= β0 +
K∑

k=1

βkαk0 +
K∑

k=1

βkα
>
k X

= γ0 + γ>X

= γ0 +

p∑
j=1

γ>j xj

20



Observation 2: Activation function
Plot of sigmoid activation function

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

σ(
u)

If we look at a plot of the sigmoid function, it is quite linear
near 0, but has nonlinear behavior further from the origin

21



Hierarchical model
A neural network can be phrased as a hierarchical model

Zk = σ(αk0 + α>k X ) (k=1,...K)

Wg = βg0 + β>g Z (g=1,...G)

µg (X ) = L−1(Wg )

The output depends on the application, where we map Wg to
the appropriate space:

• Regression: The link function is L(u) = u
(here, G = 1)

• Classification: With G classes, we are modeling
πg = P(Y = g |X ) and L = logit:

π̂g (X ) =
eWg∑G

g ′=1 e
Wg′

and Ŷ = ĝ(X ) = arg max
g

π̂g (X )

(This is called the softmax function for historical reasons)
22



Training neural networks

Neural networks have many (MANY) unknown parameters
(They are usually called weights in this context)

These are

• αk0, αk for k = 1, . . . ,K (total of K (p + 1) parameters)

• βg0, βg for g = 1, . . . ,G (total of G (K + 1) parameters)

Total parameters: � Kp + GK = K (p + G )

23



Training neural networks
The most common loss functions are

• Regression:

R̂ =
n∑

i=1

(Yi − Ŷi)
2

• Classification: Cross-entropy

R̂ = −
n∑

i=1

G∑
g=1

Yig log(π̂g (Xi))

I Here, Yig is an indicator variable for the g th class. In
other words Yi ∈ RG

(In fact, this means that Neural networks very seamlessly incorporate the

idea of having multivariate response variables, even in regression)

I With the softmax + cross-entropy, neural networks is a
linear multinomial logistic regression model in the hidden
units

24



Training neural networks

The usual approach to minimizing R̂ is via gradient descent

This is known as back propagation

Due to the hierarchical form, derivatives can be formed using
the chain rule and then computed via a forward and backward
sweep

25



Training neural networks

We’ll need some derivatives to implement the gradient descent

µ(X ) = β0 +
K∑

k=1

βkσ

(
αk0 +

p∑
j=1

αkjxj

)

Derivatives:

∂µ

∂βk
= σ(αk0 + α>k X ) = Zk

∂µ

∂αkj
= βkσ

′(αk0 + α>k X )xj

26



Neural networks: Back-propagation
For squared error, let R̂i = (Yi − Ŷi)

2

Then

∂R̂i

∂βk
= −2(Yi − Ŷi)Zik

∂R̂i

∂αkj
= −2(Yi − Ŷi)βkσ

′(αk0 + α>k Xi)Xij

Given these derivatives, a gradient descent update can be
found

β̂t+1
k = β̂t

k − γt
n∑

i=1

∂R̂i

∂βk

∣∣∣∣∣
β̂t
k

α̂t+1
kj = α̂t

kj − γt
n∑

i=1

∂R̂i

∂αkj

∣∣∣∣∣
α̂t
kj

(γt is called the learning rate, this needs to be set) 27



Neural networks: Back-propagation

Returning to

∂R̂i

∂βk
= −2(Yi − Ŷi)Zik = aiZik

∂R̂i

∂αkj
= −2(Yi − Ŷi)βkσ

′(αk0 + α>k Xi)Xij = bkiXij

Direct substitution of ai into bki gives

bki = aiβkσ
′(αk0 + α>k Xi)

These are the back-propagation equations

28



Neural networks: Back-propagation

Advantages:

• It’s updates only depend on local information in the sense
that if objects in the hierarchical model are unrelated to
each other, the updates aren’t affected
(This helps in many ways, most notably in parallel architectures)

• It doesn’t require second-derivative information

• As the updates are only in terms of R̂i , the algorithm can
be run in either batch or online mode

Down sides:

• It can be very slow

• Need to choose the learning rate γt

29



Neural networks: Other algorithms

There are a few alternative variations on the fitting algorithm

Many are using more general versions of non-Hessian
dependent optimization algorithms
(For example: conjugate gradient)

The most popular are

• Resilient back-propagation

• Modified globally convergent version

30



Regularizing neural networks

As usual, we don’t actually want the global minimizer of the
training error (particularly since there are so many parameters)

Instead, some regularization is included, with some
combination of:

• a complexity penalization term

• early stopping on the back propagation algorithm used for
fitting

31



Regularizing neural networks
Explicit regularization comes in a couple of flavors

• Weight decay: This is like ridge regression in that we
penalize the squared Euclidean norm of the weights

ρ(α, β) =
∑

β2 +
∑

α2

• Weight elimination: This encourages more shrinking
of small weights

ρ(α, β) =
∑ β2

1 + β2
+
∑ α2

1 + α2

Note: In either case, we now solve:

min R̂ + ρ(α, β)

This can be done efficiently by augmenting the gradient
descent derivatives

32



Common pitfalls

There are three areas to watch out for

• Nonconvexity: The neural network optimization
problem is non convex. This makes any numerical solution
highly dependant on the initial values. These must be

I chosen carefully
I regenerated several times to check sensitivity

• Scaling: Be sure to standardize the covariates before
training

• Number of hidden units (K): It is generally better
to have too many hidden units than too few
(regularization can eliminate some).
(Later, we will see this can include adding multiple hidden layers)

33



Starting values

The quality of the neural network predictions is very
dependent on the starting values

As noted, the sigmoid function is nearly linear near the origin.

Hence, starting values for the weights are generally randomly
chosen near 0. Care must be chosen as:

• Weights equal to 0 will encode a symmetry that keeps the
back propogation algorithm from changing solutions

• Weights that are large tend to produce bad solutions
(overfitting)

This is like putting a prior on linearity and demanding the data
add any nonlinearity

34



Starting values

Once several starting values + back-propogation pairs are run,
we must sift through the output

Some common choices are:

• Choose the solution that minimizes training error

• Choose the solution that minimizes the penalized training
error

• Average the solutions across runs
(This is the recommended approach as it brings a model averaging/Bayesian

flair)

35




