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SUBSET SELECTION AND REGULARIZATION

For now, let's assume we are doing ordinary least squares, and
hence the design (feature) matrix is X € R"*P,

We want to do model selection for at least three reasons:

e PREDICTION ACCURACY: Can essentially always be improved
by introducing some bias

e INTERPRETATION: A large number of features can sometimes
be distilled into a smaller number that comprise the “big
(little?) picture”

e COMPUTATION: A large p can create a huge computational
bottleneck.



SUBSET SELECTION AND REGULARIZATION

We will address three related ideas

e MODEL SELECTION: Selection of only some of the original p
features

e DIMENSION REDUCTION /EXPANSION: Creation of new
features to help with prediction

e REGULARIZATION: Add constraints to optimization problems
to provide stabilization



RISK ESTIMATION

REMINDER: Prediction risk is
R(f) = Pz plf <> Bias + Variance

The overridding theme is that we would like to add a judicious
amount of bias to get risk

As R isn't known, we need to estimate it

As discussed, Ripain = P4r isn't very good
(In fact, one tends to not add bias when estimating R with P¢y)

Rirain tends to R, hence we can call it



RISK ESTIMATION: A GENERAL FORM

Assume that we get a new draw of the training data, D°, such that
D ~ DY and

D = {(X17 Yl)a T (Xny Yn)} and DO — {(Xla Ylo)a T (XI"M YI‘()))}

If we make a small compromise to risk, we can form a sensible
suite of risk estimators

To wit, letting YO = (Y2,..., Y9! define

&’l — Ey0| I/P\)Dogf — % ZEYO|D€(F(X’)’ \/IO)
p i=1
(i - Ly o) =4 o)1

Then the average optimism is

@': IE‘:"Y[Rin — 'E\\)train]

Typically, opt is positive as Rivain will underestimate the risk




RISK ESTIMATION: A GENERAL FORM

It turns out for a variety of ¢ (such as squared error and 0-1)

2 < A
— f Xi y T
opt - ;21 Cov(f(X;), Y;)

Therefore, we get the following expression of risk

. 2 — A
IEEF\)in:E Rrain — C in7Yi7
Y Rin Y Rtrain + p ; ov(f(Xi), Yi)
which has unbiased estimator (i.e. Ey Ryic = Ey Rjp)

A p R A
Rgic — Rtrain + ; Zl COV(f(Xi)a Yl)



DEGREES OF FREEDOM

We call the term (where 02 = VY;)

1 « A
df = =} Cov(f(Xi), V)
=1

the degrees of freedom

(This is really the , with some caveats)

e ——

Our task now is to either estimate or compute opt to produce opt
and form:

N\

Rgic — 'E;)train + opt

This leads to Mallows Cp/Stein’s unbiased risk estimatior (SURE),
as well as forms for AIC, BIC, and others



DEGREES OF FREEDOM: EXAMPLE

Sometimes the df is exactly computable.

(In other cases, it needs to be estimated)

Look at least squares regression onto X, with VY; = o2

o\ . _ A ) Ny T
d] E‘Z(QVHOO) ﬂ = 5( 44@<Y@§ ¥) K VT
(Y)

() <



INFORMATION CRITERIA

Of course, this isn't the usual way to introduce/conceptualize
information criteria

For me, thinking of the as overly and
correcting for that optimism is conceptually appealing

For others, forming a metric! on probability measures is more
appealing

Let's go over this now for completeness

It will turn out to be a psuedo-metric; a small detail



Comparing probability measures
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KULLBACK-LEIBLER

Suppose we have data Y that comes from the probability density
function f.

What happens if we use the probability density function g instead?

ExAMPLE: Suppose Y ~ N(u,0?) = f. We want to predict a new
Y., but we model it as Y ~ N(jy,0°) = g

How far away are we? We can either compare 1 to py or Y to Y*
(This is the approach taken via the )

Or, we can compute how f is from g

(far indicates we need a notion of distance)
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KULLBACK-LEIBLER

One central idea is Kullback-Leibler discrepancy?

fy)
KL(f,g :/Iog(—> f(y)dy
(F.8) g(y) )
X — / log(g(y))f(y)dy (ignore term without g)
= —Prllog(g(Y))]
This gives us a sense of the incurred by using g instead of f.

°This has many features of a distance, but is not a true distance as
KL(f,g) # KL(g,f).
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KULLBACK-LEIBLER DISCREPANCY

Usually, g will depend on some parameters, call them 6

i

ExXAMPLE:In regression, we can specify f = N(XT@ o2) for a
fixed (true)3B, and let gg = N(X ' 3,02) over all # € RP x R

O<(Re)
As KL(f, gp) ‘[Iog(gg (Y))], we minimize this over 6.

Again, P¢ is unknown, so we minimize — log(gyp(Y)) instead. This
Is the maximum likelihood value

O = arg max gy(Y)
0

>We actually don't need to assume things about a true model nor have it be
nested in the alternative models.
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KULLBACK-LEIBLER DISCREPANCY

Now, to get an operational characterization of the KL divergence
at the ML solution

—Prllog(gz,, (Y))]
we need an approximation (don't know f, still)
Thijs approximation* is exactly AIC: ? q
i o - ,f?»s §
/ Y]'iqm/ AIC = — log(gé\l\/lL(Y)) -+ ‘5ML‘ ’Sé':g.) iyw\’ ;\ p\/%
Example: Let Iog(gg(y)) 5 log(2mo =Y — X85 ‘\%‘w\\
_ o2 KNOWN: 8 = XTLY ' \
01 )
l AIC n/%train/(zo'z) + p = Rirain, + 2U2n_1p
2 T Tl i,
1 o2 UNKNOWN: B =XTY, ng2 = (I-XXN)Y = nRirain
6" = - ’(5’“2(/3»:,’,

AIC o n log(Rerain)/2 + p = log(Rirain) + 20 1p
*See “Multimodel Inference” Burnham, Anderson (2004)
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SUMMARY

For Rye:  OPTTMISM

AIC known o2
'L/-;)train"|_O/p\t — ﬁtrain+202n_1df = q(M (\aHOWS Cp‘) if ﬁ(X) — XTBLS
] .
 SURE most f(X)
Or
KL

AIC, unknown o2 if ¢, = 2

IC = log(R rain) + contdf =
°8{Rtrain) {BIC if ¢, = log(n)
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Cross-validation



A DIFFERENT APPROACH TO RISK ESTIMATION

Let (Xo, Yo) be a test observation, identically distributed as an
element in D, but also of D.

Prediction risk: R(f) :@Yo — f(Xo))?

LA
Of course, the quantity (Yo — f(Xp))? is an unbiased estimator o

.I:'

R(f) and hence we could estimate R(f) 1[’(Y QLX(,)) i@)

However,

Or do we?
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AN INTUITIVE IDEA

Let's set aside one observation and predict it

For example: Set aside (X, Y1) and fit #(1) on (Xo, Y2), ..., (Xp, Ya)

(The notation f(1) just symbolizes leaving out the first observation before fitting 7?)
Ri(F)) = (Vi — FH(X))?

As the left off data point is of the data points used
for estimation,

N D A~ N
E(x,,vy)ip0, RL(TY) = R(F(Da-1)) = R(F(D))
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LEAVE-ONE-OUT CROSS-VALIDATION

Cycling over all observations and taking the average produces
leave-one-out cross-validation L ooy

CV () = ZR (F)) == Z( — FO(X0))2.

=1
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MORE GENERAL CROSS-VALIDATION SCHEMES

Let N = {1,...,n} be the index set for D = i ()(,‘ ‘1.),“- l ( )(,‘Y,\\S
Define a distribution V over N with (random) variable v

Then, we can form a general cross-validation estimator as
CVV(f) — EV]P)VBI?(V)

' |
)/(& r/‘i :) LGO

V<) o N
(@ (v-g0) 2 K- ( i ”(m

g( Z}o{
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MORE GENERAL CROSS-VALIDATION SCHEMES:
EXAMPLES

L oot=s n-FoLd CV
CVy(f) = EvPyly

e K-roLD: Fix V = {Vl, N K} uch that V;j v = 0 and

UjVj:N

CV(f) =

e BOOTSTRAP: Let V be given by the bootstrap distribution
over N/ (that is, sampling with replacement many times)

e FACTORIAL: Let V be given by all subsets (or a subset of all
su bsets) of N (that is, putting mass 1/(2" — 2) on each subset)
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MORE GENERAL CROSS-VALIDATION SCHEMES: A
_ LV)
COMPARISON  F(V, = = ? o Z P - (Mﬁ

%V (\ Jv |

Pl Z 00 = TR %-£o0)

L=1 .
o CVK gets more computationally demanding as K — n

e The bias of CV g goes down, but the variance increases as
K —n ]{ =10

e The factorial version isn't commonly used except when doing
a ‘real’ data example for a methods paper

flihereﬁaﬁuaan?_athﬂuﬂaﬁteﬁf—ﬁ_ﬁn?e@;hem—ea%d
| —[H—@NI—ESMQRJQ_IS—&—F%%H{
I!" bt i des I ith leorit

-
WV Losty = ;?/Z\\/ }ZZ@@ 5 VAR L O (AP £
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Summary time



RISK ESTIMATION METHODS

CV  Prediction risk consistent (Dudoit, van der Laan (2005)).
Generally selects a model larger than necessary (unproven)

AIC  Minimax optimal risk estimator (Yang, Barron (1998)).
Model selection inconsistent™

BIC Model selection consistent (Shao (1997) [low dimensionall.
Wang, Li, Leng (2009) [high dimensional]). Slow rate for
risk estimation™

(Stone (1977) shows that CV, and AIC are asymptotically equivalent.)
(*Yang (2005) gives an impossibility theorem: for a linear regression problem it is
impossible for a model selection criterion to be both consistent and achieve minimax

optimal risk estimation)
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