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Least squares
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β̂LS = argmin
β∈Rp

||Y − Xβ||22
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Regularization
Another way to control bias and variance is through regularization
or shrinkage.

The idea is to make your estimates of β ‘smaller’, rather than set
them to zero
(which is what all subsets does)

One way to do this is called ridge regression1:

β̂ridge(t) = argmin
||β||22≤t

||Y − Xβ||22

for any t ≥ 0.

Compare this to least squares

β̂LS = argmin
β∈Rp

||Y − Xβ||22

1Hoerl, Kennard (1970)
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Geometry of ridge regression in R2
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Ridge regression

An equivalent way to write

β̂ridge(t) = argmin
||β||22≤t

||Y − Xβ||22 (1)

is in the Lagrangian form

β̂ridge(λ) = argmin
β
||Y − Xβ||22 + λ||β||22. (2)

For every λ′ there is a unique t ′ (and vice versa) that makes

β̂ridge(λ′) = β̂ridge(t ′)
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Regularization and standardization
The coefficient vector isn’t invariant to rescaling.

If an intercept is included, do not penalize it:

min
β0,β

n∑
i=1

(Yi − β0 + β>Xi )
2 + λ ||β||22

The usual way of addressing this in regression is:

• Standardize all covariates for which scale is meaningful:

xj ←
(xj −mean(xj))

sd(xj)

(So, don’t standardize indictor variables, for instance )

• Standardize the response Y ← Y −mean(Y )

• Don’t include an intercept
(It would have been equal to mean(Y ))
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Ridge regression

Observe:

• λ = 0 (or t =∞) makes β̂ridge(λ = 0) = β̂LS

• Any λ > 0 (or t <∞) penalizes larger values of β, effectively
shrinking them.

Note: λ and t are known as tuning parameters
(Alternatively, hyper-parameters)

However we think about it, we have produced a suite of solutions

{β̂ridge(λ) : λ ∈ [0,∞)}

What do these solutions look like?
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Ridge regression path
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Ridge regression

Reminder: The least squares solution can be written:

β̂LS = (X>X)†X>Y .

However, if rank(X) < p, then β̂LS is not unique. In fact,

∀b ∈ {b : Xb = 0}

β̂LS + b is a valid least squares solution.

It turns out through differential calculus, we can write out the
ridge regression solution as well:

β̂ridge(λ) = (X>X + λI )−1X>Y

Quite similar. However, the λ can make all the difference..
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Regularization - Ridge Regression
Using the SVD (X = UDV>), we can look even deeper.

β̂LS = VD−1U>Y =

p∑
j=1

vj

(
1

dj

)
u>j Y

β̂ridge(λ) = V (D2 + λI )−1DU>Y =

p∑
j=1

vj

(
dj

d2
j + λ

)
u>j Y .

Similarly

Xβ̂LS = UU>Y =

p∑
j=1

uju
>
j Y

Xβ̂ridge(λ) = UD(D2 + λI )−1DU>Y =

p∑
j=1

uj

(
d2
j

d2
j + λ

)
u>j Y .

⇒ Ridge shrinks the data by an additional factor of λ.
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Ridge Regression: A Bayesian approach

Suppose we specify the likelihood as

Yi ∼ N(X>i β, σ
2)

and put a prior distribution of β ∼ N(0, τ2I ).

Then we have the following posterior (making some conditional
independence assumptions)

p(β|Y ,X , σ2, τ2) ∝ p(Y |X , β, σ2)p(β|τ2).

After kernel matching, we find that the posterior mode/mean is

β̂ridge(λ = σ2/τ2)
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Ridge regression in a new space

Note the matrix identity

(A− BC−1E )−1BC−1 = A−1B(C − EA−1B)−1

(Henderson, Searle (1980), equation (13))

Then,

β̂ridge(λ) = (X>X + λI )−1X>Y = X>(XX> + λI )−1Y
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Ridge in a new space: Computations

The ridge solution solves either the normal equations

(X>X + λI )β̂ = X>Y

or the adjoint problem

X>(XX> + λI )−1Y

The ‘heavy lifting’ in each case is done with the inversion

• X>X ∈ Rp×p =⇒ takes p3 computations, p2 space

• XX> ∈ Rn×n =⇒ takes n3 computations, n2 space

Conclusion: Depending on the relative size of n and p, this
could be substantial savings

However, a much deeper realization is possible..
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(Kernel) ridge regression

Suppose we want to predict at X , then

f̂ (X ) = X>β̂ridge(λ) = X>X>(XX> + λI )−1Y

Also,

XX> =

〈X1,X1〉 〈X1,X2〉 · · · 〈X1,Xn〉
...

〈Xn,X1〉 〈Xn,X2〉 · · · 〈Xn,Xn〉


and

X>X> = [〈X ,X1〉, 〈X ,X2〉, · · · , 〈X ,Xn〉]

where 〈X ,X ′〉 = X>X ′ is the Euclidean inner product.

If we transform Xi 7→ Φ(Xi ), and the range of Φ is equipped with
an inner product, we can use 〈Φ(Xi ),Φ(Xi ′)〉

Inserting Φ is known as kernelization or a kernel trick
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(Kernel) ridge regression

Example: Suppose X = (income,height)>

Then we could specify the map

Φ(X )> = (income,height, income ∗ height, income2,height2)

The induced feature matrix is then

X =

Φ(X1)
...

Φ(Xn)

 ∈ Rn×5
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(Kernel) ridge regression

Ordinarily, this would mean we need to solve the normal equation
inversion for p = 5

• X>X ∈ Rp×p =⇒ takes p3 computations, p2 space

However, using the kernel trick we can solve instead

• XX> ∈ Rn×n =⇒ takes n3 computations, n2 space

which is fixed in p

Implication: We can add essentially arbitrary nonlinearity
without paying higher computational, storage cost!

We will return to this again with support vector machines (SVM)
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Ridge in practice
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Ridge Regression: The tuning parameter
We can use a degrees of freedom based risk estimator to choose λ

The degrees of freedom of β̂ridge(λ) can be seen to be

df = trace
[
X(X>X + λI )−1X>

]
=

p∑
j=1

d2
j

d2
j + λ

(As λ→ 0, we get the number of parameters)

A common, classic choice is generalized cross-validation (GCV),
which has the form:

GCV(β̂) =
P̂`β̂

(1− df(β̂)/n)2

(Golub, Heath, Wahba (1979))

Note that this looks a lot like AIC with unknown variance, but with
log(1− df/n) as penalty
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Ridge Regression: The tuning parameter

To see this last claim, observe

log
(
GCV(β̂)

)
∝ log(R̂train)− 2 log(1− df(β̂)/n)

versus

AIC(β̂) ∝ log(R̂train) + 2n−1df(β̂)
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Ridge Regression: The tuning parameter

Nowadays, using K -fold cross-validation is common

Think of CVK as a function of λ, and pick its minimum:

λ̂ = argmin
λ≥0

CVK (λ)

Now, we report β̂ridge(λ̂) as our estimator
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Ridge Regression: Computation
There are several ways to compute ridge regression

We can follow any conventional least squares solving technique
(i.e.: QR factorization, Cholesky Decomposition, SVD,...):

(X>X + λI )β = X>Y

Alternatively, we can actually solve it using lm in R if we make the
following augmentation

Ỹ =



Y1
...
Yn

0
...
0


∈ Rn+p and X̃ =

[
X√
λI

]

21



Ridge Regression in R

We will concentrate on a slightly more complicated way, as it will
make things easier later.

install.packages(’glmnet’)

library(glmnet)

ridge.out = cv.glmnet(x=X,y=Y,alpha=0)
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Ridge Regression: CV plot

X = as.matrix(X)

ridge.out = cv.glmnet(x=X,y=Y,alpha=0)

plot(ridge.out$lambda,ridge.out$cvm,

xlab=’lambda’,ylab=’CV error’,main=’Ridge’,type=’l’)

abline(v=ridge.out$lambda[which.min(ridge.out$cvm)])
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Ridge regression path
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Can we get the best of both worlds?

To recap:

• Forward, backward, and all subsets regression offer good tools
for model selection.
(but the optimization problem is nonconvex)

• Ridge regression provides regularization, which trades off bias
and variance and also stabilizes multicollinearity.
(problem is convex, but doesn’t do model selection)

Ridge regression min ||Y− Xβ||22 subject to ||β||22 ≤ t

Best linear min ||Y− Xβ||22 subject to ||β||0 ≤ t
regression model

(||β||0 = the number of nonzero elements in β)
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An intuitive idea

Ridge regression min ||Y− Xβ||22 subject to ||β||22 ≤ t

Best linear min ||Y− Xβ||22 subject to ||β||0 ≤ t
regression model

(||β||0 = the number of nonzero elements in β)

Best linear Ridge
regression model regression

Computationally Feasible? No Yes
Does Model Selection? Yes No

Can we ‘interpolate’ ||β||2 and ||β||0 to find a method that does
both?
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Geometry of regularization in R2: Convexity
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Geometry of regularization in R2: Model selection
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Geometry of regularization in R2: Model selection
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Geometry of regularization in R2: Model selection
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Geometry of regularization in R2: Both
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Summary

Convex? Corners?

||β||0 No Yes
||β|| 1

2
No Yes

||β|| 3
4

No Yes

||β||1 Yes Yes X

||β|| 3
2

Yes No

||β||2 Yes No
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The best of both worlds: ||β||1

●

β2

β1

This regularization set...

... is convex (computationally efficient)

... has corners (performs model selection)

31



`1-regularized regression
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`1-regularized regression
Related methods are known as

• lasso: The covariates are recorded

• basis pursuit: The covariates are frames comprised of
various bases

• compressed sensing: The covariates are random draws
from some distribution

The estimator satisfies

β̂lasso(t) = argmin
||β||1≤t

||Y− Xβ||22

In its corresponding Lagrangian dual form:

β̂lasso(λ) = argmin
β
||Y− Xβ||22 + λ||β||1

(Note that if rank(X ) < p, then the objective function is not strictly convex. There

are now an infinite number of possible lasso solutions. (all must have the same fitted

value and || · ||1))
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Lasso regression path
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The lasso in R: glmnet

Luckily, we already know how to lasso.

Just change the ‘alpha =0’ to ‘alpha =1’, and you’re lassoing.

lasso.out = glmnet(x=as.matrix(X),y=Y,alpha=1)

#Note: glmnet automatically scales X

glmnet uses gradient descent to quickly fit the lasso solution

It can...

• handle other likelihoods than Gaussian

• supports/exploits sparse matrices (e.g. for text processing)

• use warm restarts for the grid of λ to produce more stable
fits/faster computations

(See (Friedman et al. (2007) for details))
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Optimality conditions: Review

minimize F (x) (3)

subject to x ∈ Rp (4)

Search for x∗ such that ∇F |x∗ = 0

• Turns a geometric problem into an algebraic problem: solve
for the point where the gradient vanishes

• Is necessary for optimality of x∗. Is sufficient if F is convex
and smooth.
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Gradient descent: Intuition

A summary:

1. Start with some initial x0

2. Propose x to reduce F (x)

3. Alternate between 1. and 2. until the objective function
doesn’t change (much).

Algorithmically, the implementations tend to look like

x [k + 1]← x [k] + αkv [k],

where

• x [k] is the current value of the minimizing parameter

• v [k] is a direction that (hopefully) reduces F

• αk is a relaxation term.
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Gradient descent

Assume ∃x∗ ∈ D such that ∇F |x∗ = 0

Define the map
ψ(x) = x − α∇F |x

(Recall the general form x[k + 1]← x[k] + αkv [k])

If ψ is contractive, ie

||ψ(x)− ψ(x ′)|| ≤ c ||x − x ′||

where c ∈ [0, 1), then...

Gradient descent is guaranteed to converge
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Gradient descent: Convergence proof

||x [k + 1]− x∗|| = ||x [k]− α∇F |x − x∗|| (5)

= ||ψ(x [k])− ψ(x∗)|| (6)

≤ c ||x [k]− x∗|| (7)

... (8)

≤ ck+1||x [0]− x∗|| (9)

(10)

(This means we get exponential convergence2)

Important fact: If F is 2× differentiable, contractivity means F is
convex on D

2Optimization people call this linear convergence due to equation (7)
39



Gradient descent example

If we look at multiple regression via least squares we get:

min
β
||Y − Xβ||22 ⇒

∂

∂βj
||Y − Xβ||22

=
∂

∂βj

n∑
i=1

(Yi − X>i β)2

= 2
n∑

i=1

(Yi − X>i β)Xij

Hence, we will cycle over j and make the update k = 1, . . . ,K
iterations:

β̂k+1
j = β̂kj − α

n∑
i=1

(Yi − X>i β̂
k)Xij
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Gradient descent example
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With RSS = ||Y − Xβ||22 for p = 2
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The lasso in R: LARS

Alternatively, the lars package exploits the fact that the coefficient
profiles are piecewise linear, which leads to an algorithm with the
same computational cost as the full least-squares fit on the data
(See Osborne et al. (2000) for details on the convex optimization, Efron et al. (2004)

for the LARS algorithm)
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Choosing the tuning parameter for lasso

Of course, just like in Ridge, we need a way of choosing this tuning
parameter.

We can just use cross-validation again, though this is still an area
of active research:

Homrighausen, D. and McDonald, D.J. Leave-one-out cross-validation is

risk consistent for lasso, Machine Learning

Homrighausen, D. and McDonald, D.J. Risk consistency of

cross-validation for lasso-type procedures, Journal of Machine Learning

Research

Homrighausen, D. and McDonald, D.J. The lasso, persistence, and

cross-validation, (2013) International Conference on Machine Learning,

JMLR 28(3), 1031–1039.
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Choosing the tuning parameter for lasso

For cross-validation, the heavy lifting has been done for us

cv.glmnet(x=as.matrix(X),y=Y,alpha=1)

cv.lars(x=as.matrix(X),y=Y,type=’lasso’)

Note that for the grid λ, we need only look over the interval[
0, ||X>Y ||∞

)
A grid of t has a similar restriction [0, t0), where

t0 = min
{b:Xb=0}

||β̂LS + b||1
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The lasso in R
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Lasso regression path
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Comparison: Regression path
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Comparison of lars and glmnet

There are two main problems with glmnet

• In practice, the λ interval looks like
[
ε||X>Y ||∞, ||X>Y ||∞

)
for a small ε. Sometimes, this results in finding a boundary
solution.

• The iterative nature sometimes results in bad coefficient
vectors (such as having more than min{n, p} nonzero
coefficients, which is impossible3)

There are two main problems with lars

• It is slow(er)

• It doesn’t support other likelihoods

3This is not quite true (Tibshirani (2013), Lemma 13). However, see
Lemma 15 in same paper: For any X, λ and almost all Y , the column space of
XS is the same for every S, where S = {j : |β̂λ,j | > 0}
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Flavors of lasso

• Grouped lasso (Yuan and Lin (2007), Meier et al. (2008)),
where variables are included or excluded in groups.
• Refitted lasso (e.g. Lederer 2013). Takes the estimated model

from lasso and fits the full least squares solution on selected
covariates (less bias, more variance).
• Dantzig selector (Candes, Tao (2007)), a slightly modified

version of the lasso
• The elastic net (Zou, Hastie (2005)), generally used for

correlated variables that combines a ridge/lasso penalty.
Included in glmnet. Fixes non-uniqueness problem of lasso
(although, see Tibshirani (2013)).
• SCAD (Fan and Li (2005)), a non-convex version of lasso that

adds a more severe variable selection penalty
•
√
lasso (Belloni et al. (2011)), claims to be tuning parameter

free (but isn’t). Uses || · ||2 instead of || · ||22 for the loss.
• Generalized lasso (Tibshirani, Taylor (2011)). Adds various

additional penalty matrices to the penalty term (ie: ||Dβ||1).
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