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Summary

The overall scheme is a three(four?)-fold process

1. Select a method suited to your task

2. Choose a risk estimation method that has the properties that
you desire (e.g. end of previous slides)

3. Perform the necessary computations to minimize 2.
constrained to be in the family of procedures in 1.

4. Show theoretically that your procedure has desirable properties
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Brief optimization and convexity
detour
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Optimization

An optimization problem (program) can be generally formulated as

minimize F (x) (1)

subject to fj(x) ≤ 0 for j = 1, . . . ,m (2)

hk(x) = 0 for k = 1, . . . , q (3)

Here

x = (x1, . . . , xn)> are the parameters

F : Rn → R is the objective function

fj , hk : Rn → R are constraint functions

The optimal solution x∗ is such that F (x∗) ≤ F (x) for any x∗, x
that satisfies equations (2) and (3).
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Convexity

The main dichotomy of optimization programs is convex vs.
nonconvex

Generally speaking, a convex program is one in which the objective
and contraint functions are all convex, that is

∀t ∈ [0, 1], ∀x ∈ D =
(⋂m

j=1 dom fi

)
∩
(⋂q

k=1 dom hk
)
∩ (dom F),

and ∀f ∈ {f1, . . . , fm, h1, . . . , hq,F}

f (tx + (1− t)x ′) ≤ tf (x) + (1− t)f (x ′)

This can be thought of (for smooth enough f )

f (x ′) ≥ f (x) + (∇f |x)>(x ′ − x)

Intuition: This means that the function values at a point x ′

are above the supporting hyperplane given by the
tangent space at any point x
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Convexity example
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Convexity

Methods for convex optimization programs are (roughly) always
global and fast

For general nonconvex problems, we have to give up one of these:

• Local optimization methods that are fast, but need not find
global solution
(So called greedy approximations)

• Global optimization methods that find global solutions, but
are not always fast (indeed, are often slow)
(Usually exhaustive search type approaches)
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Model selection
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Model selection

All subsets

Branch and bound

Global

Stepwise methods

Greedy approximation

Local

Regularization

Convex optimization

Global and fast

Some comments:

Non convex programs

Can be seen as a convex relaxation of the nonconvex program
giving all subsets1

1We’ll return to this shortly
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All Subsets Regression

First, identify all considered covariates and transformation and put
them in the feature matrix X ∈ Rn×p

Best subset selection algorithm: For k = 1, . . . , p

1. Find R̂train for the
(p
k

)
models of size k

2. Save the model that minimizes R̂train

Now, report the model that minimizes one of the risk estimates
from the previous slide over these p models
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All Subsets Regression in R

We can find with the function regsubsets in the package leaps
(See code on website) The syntax and associated objects look like:

allsubsets.out = regsubsets(Y~.,data=X,nvmax=pmax)

> summary(allsubsets.out)

[1] "which" "req" "rss" "adjr2" "cp" "bic "outmat" "obj"

• The nvmax = pmax controls the max size of models
considered. The default is 8 and that is usually far too small.

• Now, we can pick among the pmax models that minimize R̂
for a given model size using BIC or Cp

This can be done in some cases, though there is a problem
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All Subsets Regression: A Big Problem
(Literally)

If there are p predictors then there are 2p possible models
(Without considering interactions or transformations)

In general, this is a nonconvex problem

If p = 40 (which is considered a small problem these days), then
the number of possible models is

240 ≈ 1, 099, 512, 000, 000⇒ More than 1 trillion!

If p = 265, then the number of possible models is more than the
number of atoms in the universe2

We must sift through the models in a computationally feasible way

2It is estimated there are 1080 atoms in the universe.
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All Subsets Regression

The leaps package in R uses a technique known as branch and
bound
(The statistical implementation is based on the paper Furnival and Wilson (1974))

It is a widely used tool for solving large scale NP-hard
combinatorial optimization problems.

Note, however, that though it can speed up the optimization
immensely, it cannot reduce the complexity of the problem
(Still exponential)
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Branch and bound
Let M = M1 ∪ . . . ∪MK be the set of all possible solutions and a
partition comprised of branches, respectively.
(Statistically, we think of M as the set of all possible models.)

Suppose for objective function F we want to find

F∗ := max
m∈M

F (m)

For each Mk , define
Fk := max

m∈Mk

F (m)

and let F k ,F k be a bracket such that

F k ≤ Fk ≤ F k

(Note that Fk is in general not explicitly constructed)

Then
max
k

F k := F ≤ F∗
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Branch and bound

The main realization is that the branch Mk does not need to be
explored if either of the following occur

i. Bound
F k ≤ F

ii. Optimality

max
m∈Mk

F (m) has been found
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Branch and bound

The two main questions remain:

1. How to choose the partition(s)?

2. How to form the bracket?
(Note that to be helpful, the bracket must be easy to compute)

These are very case specific. Let’s return to model selection
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Branch and bound for model selection

Let’s suppose we set3

F (m) = n log(R̂train(β̂m)) + 2|m|

For a set of models Mk , let

mk,inf be the largest model contained4 in every model in Mk

mk,sup be a smallest model that contains every model in Mk

3Note: we are trying to minimize F , not maximize
4This does not have to be in Mk

17



Branch and bound for model selection

Example: Let x1, . . . , x5 be covariates

M = ∪3
k=1Mk ,

where

M1 = {{x1, x3}, {x2}},
M2 = {{x2, x3, x4}, {x3, x4}},
M3 = {{x3, x5}, {x3}},

m2,inf = {x3, x4}
m2,sup = {x2, x3, x4}
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Branch and bound for model selection

Reminder:
For the Mk , let

mk,inf be the largest model contained in every model in Mk

mk,sup be a smallest model that contains every model in Mk

Then:

∀m ∈ Mk

F (m) ≥ n log(R̂train(β̂mk,sup
)) + 2|mk,inf | = Lk

F (m) ≤ n log(R̂train(β̂mk,inf
)) + 2|mk,sup| = Uk

(We don’t actually need Uk , though)
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Branch and bound for model selection: An
algorithm

1. Define a global variable b = F (m) for any m ∈ M
(As an aside, every time F (m) is computed, update b if F (m) < b)

2. Partition M = {M1, . . . ,MK}
3. For each k , if Lk > b, eliminate the branch Mk

4. Gather each remaining Mk and set union equal to M

5. Else, recurse and return to 2.
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Greedy approximations
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Forward stepwise selection

In the likely event that 2p is too large to be searched over
exhaustively, a common greedy approximation is the following

Let R̂ be any risk estimate

1. Find R̂(∅): That is, the intercept only model

2. Search over all p single feature models, computing R̂ for each
one. Say including xj minimizes R̂ with a value R̂(xj). If

R̂(xj) < R̂(∅), add xj to the model and continue. Otherwise
terminate

3. Now search over all p − 1 models that contain xj and find the

xj ′ that minimizes R̂. If R̂(xj , xj ′) < R̂(xj), add xj ′ to the
model and continue. Otherwise terminate

4. · · ·
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Forward stepwise selection

regsubsets(Y~.,data=X,nvmax=pmax,method=’forward’)

Pros:

• This approach can be used effectively in either the Big Data
or High Dimensional regimes

• It tends to produce sensible answers that are not too different
from all-subsets

Cons:

• Can get trapped in a poor local minimum
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General stepwise selection

This algorithm can can adapted to..

• start with the full model and stepwise remove covariates. This
is known as backward stepwise selection

regsubsets(Y~.,data=X,nvmax=pmax,method=’backward’)

(useful if the full model isn’t too large and a superset of the important

covariates is desired)

• consider both adding and removing covariates at each step.
This is known as stepwise selection

regsubsets(Y~.,data=X,nvmax=pmax,method=’seqrep’)
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Important comments

After using any of these model selection approaches, we produce
estimates β̂ and predictions Ŷ = β̂>Xselect where Xselect includes
only the selected features

This can be interpreted as these covariates are most important for
predicting Y from the features included in X ∈ Rp

(The usual caveats apply: linearity (correlation), there are surely some important

coefficients left out/unimportant ones included)

If we run out = lm(Y∼ Xselect), then summary(out) will produce
the usual significance tests: these are not valid after model
selection
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Important comments

• If we want to be sure to include all the important covariates,
then we can use AIC/Cp + backward stepwise selection

• If we want to be sure to only include important covariates,
then we can use BIC + forward stepwise selection

• If we want to do predictions, use AIC/Cp, but it isn’t clear
what method is the best

(See website for example code for doing model selection in R)
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