
Additional topics on the lasso
-Statistical Machine Learning-

Lecturer: Darren Homrighausen, PhD

1

`1-regularized regression

Reminder Known as

• ‘lasso’

• ‘basis pursuit’

The estimator satisfies

β̂lasso(t) = argmin
||β||1≤t

||Y− Xβ||22

In its corresponding Lagrangian dual form:

β̂lasso(λ) = argmin
β
||Y− Xβ||22 + λ||β||1

2

Some additional topics

1. Grids and cross-validation

2. Sparse matrices: In some cases, most of entries in X are
zero and hence we can store/manipulate X much cheaper
using sparse matrices

3. Elastic net: For use when covariates are highly related to
each other

4. Refitted lasso: A proposal for reducing the lasso bias

5. Scaled sparse regression

3

Grids and cross-validation

4

Some comments about glmnet

(Note: This section’s examples are in terms of Ridge regression. There are the same

problems with lasso and elastic net. I just am picking one for simplicity)

Some further details

• Note that in this figure:

0.0 0.2 0.4 0.6 0.8

0.
54

0.
55

0.
56

0.
57

0.
58

0.
59

0.
60

Ridge

lambda

C
V

 e
rr

or

many solutions have almost the same CV error

In fact, since CV is a risk estimate, it is random

• The lower end point of the grid is somewhat arbitrary chosen

5

Some comments about glmnet

The way that glmnet works is to

1. form a grid of λ values,

2. find the cross-validation error for each ridge solution on that
grid

3. compute the minimum cross-validated λ: λ̂

4. report β̂ridge(λ̂) as the final solution

The important piece is that the final solution depends on which
grid we choose

The function cv.glmnet comes with a plotting function

ridge.cv = cv.glmnet(x=X,y=Y,alpha=0)

plot(ridge.cv)

6

Some comments about glmnet

−8 −6 −4 −2 0 2

0.
6

0.
8

1.
0

1.
2

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

●●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

8 8 8 8 8 8 8 8 8 8

• The left-most dotted, vertical line occurs at the CV minimum

• The right-most dotted, vertical line is the
I largest value of λ ...
I such that the error is within one standard-error of the minimum

(the so called one-standard-error rule)

7

Some comments about glmnet

Though glmnet automatically allocates a grid, it isn’t necessary
any good

Sometimes...

• the grid values are too far apart near the minimum

• the grid doesn’t allow small/large enough λ values

8

Some comments about glmnet

−8 −6 −4 −2 0 2

0.
6

0.
8

1.
0

1.
2

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

●●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

8 8 8 8 8 8 8 8 8 8

Example of a bad minimum: Grid values too far apart

9

Some comments about glmnet

−2 0 2 4 6

0.
6

0.
8

1.
0

1.
2

Ridge

lambda

C
V

 e
rr

or

Example of a bad minimum: Grid values too large

How to fix it:

ridge.cv = cv.glmnet(x=X,y=Y,alpha=0)

min.lambda = min(ridge.cv$lambda)

lambda.new = seq(min.lambda,min.lambda*.001,length=100)

ridge.cv = cv.glmnet(x=X,y=Y,alpha=0,lambda=lambda.new)

lambda.hat = ridge.cv$lambda[which.min(ridge.cv$cvm)]
10

Some comments about glmnet

New minimum, after moving λ grid smaller:

0.0 0.2 0.4 0.6 0.8

0.
54

0.
55

0.
56

0.
57

0.
58

0.
59

0.
60

Ridge

lambda

C
V

 e
rr

or

11

Sparse matrices

12

Sparse matrices

load("../data/hiv.rda")

X = hiv.train$x

> X[5:12,1:10]

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

[1,] 0 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0 0 0 1 0 0

[6,] 0 0 0 0 0 0 0 0 0 0

[7,] 1 0 0 0 0 0 0 0 0 0

[8,] 0 0 0 0 0 0 0 0 0 0

Many zero entries!

13

Sparse matrices

All numbers in R take up the same space
(Space in this context means RAM aka memory)

> print(object.size(0),units=’auto’)

48 bytes

> print(object.size(pi),units=’auto’)

48 bytes

Idea: If we can tell R in advance which entries are zero, it doesn’t
need to save that number

14

Sparse matrices

This can be accomplished in several ways in R

One is with the Matrix package

library(’Matrix’)

Xspar = Matrix(X,sparse=T)

15

Sparse matrices

Let’s take a look at the space difference

> print(object.size(X),units=’auto’)

1.1 Mb

> print(object.size(Xspar),units=’auto’)

140.7 Kb

Pretty substantial! Only 12.1% as large

16

Sparse matrices

Lastly, we can create sparse matrices without having the original
matrix X ever in memory

This is usually done with three vectors of the same length:

• A vector with row numbers

• A vector with column numbers

• A vector with the entry value

i = c(1,2,2)

j = c(2,2,3)

val = c(pi,1.01,100)

sparseMat = sparseMatrix(i = i, j = j, x = val,dims=c(4,4))

regularMat = as(Matrix(sparseMat,sparse=F),’dgeMatrix’)

17

Sparse matrices

> print(sparseMat)

4 x 4 sparse Matrix of class "dgCMatrix"

[1,] . 3.141593 . .

[2,] . 1.010000 100 .

[3,]

[4,]

> print(regularMat)

4 x 4 Matrix of class "dgeMatrix"

[,1] [,2] [,3] [,4]

[1,] 0 3.141593 0 0

[2,] 0 1.010000 100 0

[3,] 0 0.000000 0 0

[4,] 0 0.000000 0 0

18

Sparse matrices

Sparse matrices ‘act’ like regular (dense) matrices

They just only keep track of which entries are non zero and
perform the operation on these entries

For our purposes, glmnet (and other methods) automatically check
to see if X is a sparse matrix object

This can be a substantial speed/storage savings for large, sparse
matrices

19

SVD

The full SVD takes O(min{n2p + p3}) operations
(This can be done with the svd function in R)

svd_out = svd(X,nu=nu,nv=nv)

U = svd.out$u

V = svd.out$v

D = diag(svd.out$d)

nu ∈ {0, n}, nv ∈ {0, p}

Note: Though the parameters can be set to intermediary values,
these are ignored

20

SVD

Often, we only need a few (q) singular values/ vectors For this, we
can use Krylov subspace techniques in O(min{npq})
(This can be done with the irlba package in R)

The irlba function leverages the sparse matrix data structure

svd_out = irlba(X,nu=nu,nv=nv)

U = svd.out$u

V = svd.out$v

D = diag(svd.out$d)

nu ∈ [0, n], nv ∈ [0, p]

Example: The netflix prize dataset was 480,189 rows by 17,770
columns with 100,480,507 non-zero entries

This can be computed in seconds on many computers

21

SVD

The irlba function comes with additional choices:

• adjust: With irlba, you don’t want to just compute q singular
vectors if you need q, instead compute q + adjust to enhance
convergence.
(More is better, but 5 is usually fine)

• maxit: irlba is iterative by nature. Check the output object
iter to make sure the computation didn’t terminate based on
iterations.

22

Elastic net

23

Elastic net

The ridge solution is always unique and does well when the
covariates are highly related to each other:

β̂ridge,λ = argmin
β
||Y− Xβ||22 + λ||β||22 = (X>X + λI)−1X>Y

The lasso solution

β̂lasso,λ = argmin
β
||Y− Xβ||22 + λ||β||1

isn’t necessarily unique, but it can do model selection

However, it can do poorly at model selection if the covariates are
highly related to each other

24

Elastic net
The elastic net was introduced to combine both of these behaviors

It solves

β̂α,λ = argmin
β

[
||Y− Xβ||22 + λ

(
(1− α)||β||22 + α||β||1

)]
We can do the elastic net in R with glmnet

alpha = 0.5

out.elasticNet = glmnet(x = X, y = Y, alpha=alpha)

The parameter alpha needs to be set

There does not exist any convention for this, but CV can be used
(You have to write this up yourself, though. Usually, people just play around with

different values)

25

Refitted lasso

26

Refitted lasso

Since lasso does both

• regularization

• model selection

it can produce a solution that produces too much bias

A common approach is to do the following two steps:

1. choose the λ via the ‘one-standard-error rule’

2. refit the (unregularized) least squares solution on the selected
covariates

27

Refitted lasso
We can do this in R via

#Get CV curve

lasso.cv.glmnet = cv.glmnet(X,Y,alpha=1)

#Get beta hat with one-standard-error rule

(remove intercept index -> [-1])

betaHat.temp = coef(lasso.cv.glmnet,s=’lambda.1se’)[-1]

Identify which covariates are nonzero

selectedCovs = which(abs(betaHat.temp) > 1e-16)

Run regular least squares using those covariates

refitted.lm = lm(Y~.,data=data.frame(X[,selectedCovs]))

##

Output: either predictions or coefficients

##

Yhat.refitted = predict(refitted.lm,X_0[,selectedCovs])

betaHat.refitted = refitted.lm$coefficients

28

Refitted lasso

Important: Do not attempt to do inference with the reported
p-values. These are absolutely not valid!

However, the parameter values are estimates of the effect of that
covariate

29

Scaled-sparse regression

30

Scaled-sparse regression

Theoretically, the optimal value for λ looks like:

λ = Cσ

√
n

log(p)

for some constant C .

• If we knew the true σ, we could find an optimal λ

• If we knew the optimal λ, we could find the σ

This speaks to using an iterative approach

31

Scaled-sparse regression

Scaled sparse regression (SSR) jointly estimates the regression
coefficients and noise level in a linear model

It alternates between

1. estimating σ via

σ̂ =

√
1

n

∣∣∣∣∣∣Y − Xβ̂lasso(λ)
∣∣∣∣∣∣2

2

2. setting

λ = C σ̂

√
n

log(p)

(C is usually set to something like 1/2)

32

Scaled-sparse regression

We can do this in R via

library(scalreg)

lasso.ssr = scalreg(X = X,y = Y,LSE=F)

> names(lasso.ssr)

[1] "hsigma" "coefficients" "residuals"

[4] "fitted.values" "type" "call"

33

Scaled-sparse regression

Also, the LSE parameter indicates if we want to do refitted lasso

Running

lasso.ssr = scalreg(X = X,y = Y,LSE=T)

Creates an object lse

> names(lasso.ssr)

[1] "hsigma" "coefficients" "residuals"

[4] "fitted.values" "type" "lse"

This object has all the relevant information. For instance
predictions

Yhat.ssr.refitted = X_0 %*% lasso.ssrlsecoefficients

34

