CLASSIFICATION VIA TREES

- STATISTICAL MACHINE LEARNING-

Lecturer: Darren Homrighausen, PhD



WHAT IS A (DECISION) TREE?

e Trees involve or the predictor space
into a number of simple regions.

e Trees are simple and useful for interpretation.
e Basic trees are not great at prediction.

e More modern methods that use trees are much better.



EXAMPLE

TREE
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DENDROGRAM VIEW

sp500 < —?.0313227

Maine < D.113708

TERMINOLOGY
e We call each split or end point a node. Each terminal
node is referred to as a leaf
» This tree has 2 interior nodes and 3 terminal nodes.
e T[he interior nodes lead to branches.
» This graph has two main branches (the S&P 500 split).



PARTITIONING VIEW
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NOTES
e We classity all observations in a region the same.
e The three regions R1, R2, and R3 are the leaves of the
tree.



TREE

sp500 < —P.0313227
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We can interpret this as
e S&P 500 is the most important variable.
o If S&P 500 is large enough, then we predict no recession.
e |f S&P 500 is small enough, then we need to know the
change in the employment level of Maine.



How DO WE BUILD A TREE?

1. Divide the predictor space into M non-overlapping regions
Ri,..., Ry
(this is done via greedy, recursive, binary splitting)
2. Every observation that falls into a given region R, is
given the same prediction
» REGRESSION: The average of the responses for a region
» CLASSIFICATION: Determined by majority (or plurality)
vote in that region

Important:
- Trees can only make rectangular regions that are
with the coordinate axis.
- The fit is , which means that after a split is made,
all further decisions are conditional on that split.
- The tree stops splitting when there are too few
observations in a terminal node




Regression trees



IMPLICIT MODEL
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For a given partition Ry, ..., Ry, the model for the response is

foé) — Z leRm(X)
XeRD ™=

We need to estimate both (R,,) and (c,,)

Generally, searching over all possible regions is infeasible
(This would involve sifting through all M < n and all configurations for R,)
So we use a approach instead



REGRESSION TREES

Define the two half-planes

n(j,s) = {X|X! <s} and r(j,s) = {X|X! > s}

For squared error loss, we solve

min [ min Z (Y; — c1)® + min Z (Y — @)

J,S C1 ] 2 ]
Xieri(j,s) Xi€ra(j,s)

This generates, for n, = 27:1 1, (Xi),

CA‘k:n;:l E Y

I X;Ery

The next splits will be conditional on the minimizing s



Classification trees
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CLASSIFICATION TREES

For a given partition R,, and class g, define training
proportions

NS ,gmg(X),\: lRm(X)nm Z l(Y’ :g)

;, Our cIaSS|f|cat|on IS

This presumes a given partition (R,,). This must be estimated

For this, we need a
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HoOw DO WE MEASURE QUALITY OF FIT?

Different measures of node impurity (loss function in tree

terminolo
gy) ‘
MIMICS DAYRS RULE

There are many possibilities:

CLASSIFICATION ERROR RATE: E =1 —(maxXg(Pmg)
GINI INDEX: G =2, Pmg(L — Prmg)
CROSS-ENTROPY: D= —3", Pmglog(Pmg)

(Cross-entropy is also known as deviance)

We build a classifier by growing a tree that minimizes
one of these criteria
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HoOw DO WE MEASURE QUALITY OF FIT?
ExAMPLE: Suppose G =2. Then p=pp1 =1 — Ppmo

=512

The m™ node is made by minimizing E, G, or D over all
e Features
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Generally, GINI INDEX or CROSS-ENTROPY is preferred

(They penalize values of p far from 0 or 1 more severely)
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HoOw DO WE MEASURE QUALITY OF FIT?
ExAMPLE: Suppose G = 2 and we want to make the first

split ﬁ - j 03
K
) R Rue §
Then p11 =1 — pro
(Define the ‘left’ or ‘bottom’ region as R;)
Let's look at some possible splits:
3 P.=05 S Pu=1
RH:OJS /[:311:0.4
p;,=0.67 p;=0.5

X1

X1
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HoOw DO WE MEASURE QUALITY OF FIT?

X2
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HoOw DO WE MEASURE QUALITY OF FIT?
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Where would we split?

For E and G, at the solid, horizontal line

(P11 =1= E =0,G =20/81)
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HoOw DO WE MEASURE QUALITY
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THERE’'S A PROBLEM

Following this procedure

e The process described so far will fit overly complex trees,
leading to poor predictive performance.

e Overfit trees mean they have too many leaves.

e T[o stretch the analogy further, trees with too many
leaves must be pruned.
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PRUNING THE TREE

e Cross-validation can be used to directly prune the tree,
but it is far too expensive (computationally) to use in
practice (combinatorial complexity) S CALT X

e Instead, we use weakest link pruning ClasH | REL. TRELS

7|

N (Y # YR,) AT

m=1/eR,,

where | T| is the number of terminal nodes.

Essentially, we are trading (first term) with
(second term)

(compare to lasso)

e Now, cross-validation can be used to pick A.
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RESULTS OF TREES ON RECESSION DATA
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RESULTS OF TREES ON RECESSION DATA
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of the unpruned tree (nested)

There are splits that result in having the same prediction.

WHy?



SPLITS WITH SAME PREDICTION
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Suppose we split at vertical, dashed line. Then p;; = 0.75.

What happens if we were to now split R; at X2 = 0.57
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TREES IN R

\\ /)
(‘Po\rv)'
Create a basic, unpruned tree:

require(tree)

out.tree = tree(Y".,data=X,split=’gini’)
plot(out.tree)

text (out.tree)
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TREES IN R

Prune the tree via cross-validation

out.tree.orig = tree(Y~.,data=X)

out.tree.cv = cv.tree(out.tree.orig,FUN=prune.misclass)
> names (out.tree.cv)
[1] "size" "dev" "k" "method"
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TREES IN R

Prune the tree via

> out.tree.cv
$size
[1] 14 13 11 9 3 2 1

$dev
[1] 45 45 44 44 44 64 67

$k
[1] -Inf 0.0 2.0 2.5 3.0 15.0 20.0

$method
[1] "misclass"

NOTE:
k corresponds to A\ in weakest-link pruning.
dev means missclassifications in cv.tree
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CROSS VALIDATION PLOTS

plot(out.tree.cv$size,out.tree.cvddev,type="b")
plot(out.tree.cvdk,out.tree.cvddev,type="b")

out.tree.cv$size

out.tree.cv$k
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TREES IN R

Prune the tree via cross-validation

best.size = out.tree.cv$sizel[which.min(out.tree.cv$dev)]
> best.size

[1] 11

out.tree = prune.misclass(out.tree.orig,best=best.size)

class.tree = predict(out.tree,X_0,type=’class’)
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AN INTRODUCTORY EXAMPLE

Use macroeconomic data to predict recessions

Use handful of national-level variables — Federal Funds Rate,
Term Spread, Industrial Production, Payroll Employment,
S&P500

Also include state-level Payroll Employment

In this example, we code Y =1 as a recession and Y =0 as
growth.

We will use data from 1960 through 1999 as

We will use data from 2000 through 2011 as
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RESULTS OE.TREES ON RECESSION DATA
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ADVANTAGES AND DISADVANTAGES OF
TREES

_|_

_|_

_|_

Trees are very easy to explain (much easier than even
linear regression).

Some people believe that decision trees mirror human

C

C

ecision.

‘rees can easily be displayed graphically no matter the
Imension of the data.

‘rees can easily handle qualitative predictors without the

need to create dummy variables.

Trees aren't very good at prediction.

To fix this last one, we can try to grow many trees and
average their performance.
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