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KERNEL METHODS

INTUITION: Many methods have linear decision boundaries

We know that sometimes this isn't sufficient to represent data

ExAMPLE: Sometimes we need to included a polynomial
effect or a log transform in multiple regression

Sometimes, a boundary, but in a different space makes
all the difference..



OPTIMAL SEPARATING HYPERPLANE

REMINDER: The Wolfe dual, which gets maximized over «,
produces the

Wolf dual = Z o — % S: S: Oz,-akY,-YkXiTXk

=1 =1 k=1

(this is all subject to a; > 0)

A similar result holds after the introduction of slack variables

(e-g. )

IMPORTANT: The features only enter via

X'X' = (X, X



(KERNEL) RIDGE REGRESSION
REMINDER: Suppose we want to predict at X, then

]?(X) — XTBridge,)\ — XTXT(XXT + )\/)_1 Y
Also,

(X1, X1) (X1, X2) -+ (X, Xp)

<Xn7X1> <Xn7:X2> <Xn7Xn>

and
X'X! = [<X7X1>7 <X7X2>7 T <X7Xn>]

Again, we have the covariates enter only as

(X, Xy=X"'X



LLOGISTIC REGRESSION: TRANSFORMATIONS

Let's look at the default data in “Introduction to Statistical
Learning”

In particular, we will look at default status as a function of
balance and income
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LLOGISTIC REGRESSION: TRANSFORMATIONS

out.glm = glm(default™balance + income,family=’binomial’)
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LLOGISTIC REGRESSION: TRANSFORMATIONS

out.glm = glm(default~“balance + income +
I(income~2) ,family=’binomial’)
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CONCLUSION: A Linear rule in a transformed space can have
a nonlinear boundary in the original features



LLOGISTIC REGRESSION: TRANSFORMATIONS

REMINDER: The logistic model: untransformed

logit(P(Y = 1|X)) = fo + 8' X
= (o + Bibalance + frincome

The decision boundary is the hyperplane {X : 5y + 3' X = 0}

This is in the feature space



LLOGISTIC REGRESSION: TRANSFORMATIONS

Adding the polynomial transformation ®(X) = (x1, x0, X3):
logit(P(Y = 1]|X)) = o + 8 (X
= By 4+ [1balance 4+ frincome + Szincome

Decision boundary is still a hyperplane {X: 3, + 3'®(X) = 0}

2

This is in the feature space!
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LLOGISTIC REGRESSION: TRANSFORMATIONS

Of course, as we include more transformations,

e \We need to choose the transformations
o can become difficult if we aren’t careful

(ExamPLE: Solving the least squares problem takes something like np?

computations)

e We need to to prevent overfitting

Can we form them in an automated fashion?
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Kernel Methods



NONNEGATIVE DEFINITE MATRICES

Let A € RP*P be a symmetric, nonnegative definite matrix:
z'Az>0forall z and A' = A

Then, A has an eigenvalue expansion
p
A=UDU" =) duuf
j=1

where d; > 0

OBSERVATION: Each such A, generates a new inner product

T

(z,Z)V=2z'Z=z2z" | 7

Identity
(2,20 =z AZ

(If we enforce A to be positive definite, then (z,z)4 = ||z||%.is a norm)
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NONNEGATIVE DEFINITE MATRICES

Suppose AJ,: is the (/,/) entry in A, and A; is the i*" row

Al Al z
Az=| ' | z= :
T T
_Ap_ _Ap 4
NOTE: Multiplication by A is really taking with

ItS rows.

Hence, A; is called the (multiplication) kernel of matrix A
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KERNEL METHODS

k: X xAX — Ris asymmetric, nonnegative definite kernel

Write the eigenvalue expansion of k as /[< (.|,>( I(X\J&?(

K L.~ GovaLwnicy > k (- )
ve_Sk(X,XN) =) 00;(X)ei(X) T TEX)
'P&CES) j:]la IR
| :\\ | . 7 l/ @Cﬁﬁs’“‘)
with Z d u . NINEL R
o Al
o (9 > 0 (nonnegative definite) Z I( A (
o |[(0)7]], = X5 0 < o0 PR
e The ¢, are orthogonal eigenfunctions: fgbjgbj/ = 5“ |

1 %)

(This is called Mercer's theorem, and such a k is called a Mercer kernel) 0 A
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KERNEL: EXAMPLE

Back to polynomial terms/interactions:

Form
ka(X, X)) = (X" X +1)°

ky has M = (pyd) eigenfunctions

These the space of polynomials in RP with degree d
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KERNEL: EXAMPLE

EXAMPLE: Let d =p=2= M = 6 and

k(u,v) =14 2uvi + 2usvs + U2vE 4 U5 ve + 2uithvi vy

)) Svm\ REQUIRE OnuLY
To(v) (BONZUND

N
\<(X)X'>
— (1, \/§V1, \/§V2, V127 V22, \/§V1V2)

IMPORTANT: These equalities are that makes
kernelization work!
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KERNEL: CONCLUSION

Let's recap: W,V Q;’Kp

k(u,v) =14 2uvi + 2usvo + UZvi 4 usve + 2uitb vy vy

= {®(u), ®(v))

e Some methods only involve features via inner products
XTX' = (X, X)
(We've explicitly seen two: ridge regression and support vector classifiers)

e |f we make transformations of X to ®(X), the procedure
depends on ®(X)'®(X') = (d(X), d(X"))

e CRUCIAL: We can compute this inner product via the
kernel:

(X, X) = (®(X), (X))
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KERNEL: CONCLUSION

Instead of creating a very high dimensional object via
transformations, choose a kernel k

Now, the only thing left to do is form the
kernel evaluations

K = [k(Xi, Xir)|1<ii<n

L‘) ){(TX o YXT
x =c(1,2,3)# n=3 (

k = function(x,y){ return(x + y + x*xy)}

> outer(x,x,k)
[,1]1 [,2] [,3] K hkr
1, 3 5 7
(2, ] S} 8 11
3, 7 11 15

of
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(Kernel) SVMs

= QY
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KERNEL SVM

RECALL:
1 n
SBI = D il V(X[ B + o) — 1]
=1

Derivatives with respect to 5 and 5y imply:

o = 27:1 a; Y X
o O — 27:1 CM,'Y,'
Write the solution function

h(X) =fo+ ' X =0+

ZA%

Kernelize the support vector classifier
machine (SVM):

20



(FZENERAL KERNEL MACHINES

After specifying a kernel function, it can be shown that many
procedures have a solution of the form K\CHS

FX) = 7ik(X, X))~ SPurme medecs
i=1 FoR_ oB5ER vAsTwAL
For some ~1,...,7, DATA " LURMBA

Also, this is equivalent to performing the method in the space
given by the of k

k(u,v) = Zejﬁbj(u)@(v)

Also, (the) feature map is

[mpacer b = [b1,...,bp, .. ]
21



KERNEL SVMS

Hence (and luckily) specifying ® itself unnecessary,

(Luckily, as many kernels have difficult to compute eigenfunctions)

We need only define the that is symmetric, positive
definite

Some common choices for SVMs:
e POLYNOMIAL: k(x,y) = (1+ x"y)?
o RADIAL BASIS: k(x,y) = eIkl

(For example, b =2 and 7 = 1/(202) is (proportional to) the Gaussian density)
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KERNEL SVMS: SUMMARY
the solution form for SVM is

b= i a; YiX;
i=1

Kernelized, this is

5 — i Oé,\/,(b(X
i=1

Therefore, the induced hyperplane is:

h(X) = &(X) "8+ fo = Zay X)) + Bo

= ZOdiYik(X,Xi) + Bo

=1

The final classification is still (X) = sgn(h(X))
23



SVMs via penalization
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SVMS VIA PENALIZATION

NOTE: SVMs can be derived from methods

The support vector classifier optimization problem:
TOCA:
m|n_ ||5||2 +)\Z§/ SUbjeCt to TF\\(E TAVEY

Bo,8 2
Tw T v€ SZ,
\/Ih(XI) > 1 — giagi > 077 for each i
L N ¥ xZ0

Writing h(X) = &(X)' 8 + 3y, consider [’)(]+ ) 3 o O

= 7

l min Y [L— Y:h(X)]1 + 7118])3
8,50
g—//\J LQ\I

These optimization problems are the same!
(With the relation: 2\ = 1/7)
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SVMS VIA PENALIZATION

The part is the hinge loss function

(X, Y) = [1— YA(X)],

The hinge loss approximates the zero-one loss function

underlying classification [)()/, Y) ~ /L/_ (?mﬂ’)

It has one major advantage, however:
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SURROGATE LOSSES: CONVEX RELAXATION
Looking at

v
\ anIBgZ[l— Yih(X)]+ + 7118115

=1

It is temptmg to minimize (analogous to linear regression)

Elrfo) ¢ "\ [l 3““7>

ha.,c‘(/w PVI) Zl ) + 716113 LJ
= 1']\

However, this is (in u= h(X)Y)

A common trick is to approximate the objective
with a convex one

(This is known as convex relaxation with a surrogate loss function)

27



SURROGATE LOSSES

IDEA: We can use a surrogate loss that mimics this function
while still being convex

It turns out we have already done that! (twice)
o HinGE: [1 — Yh(X)].
o LocGisTIC: log(1 + e~ Yh(X))

28



SURROGATE LOSSES
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SVMS IN PRACTICE

(GENERAL FUNCTIONS: The basic SVM functions are in the
C++ library libsvm

R PACKAGE: The R package e1071 calls libsvm
PATH ALGORITHM: svmpath

For a nice comparison of these approaches, see “Support
vector machines in R”
(http://www. jstatsoft.org/v15/i09/paper)
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SVM EXAMPLE

tune.out

tune(svm,Y”.,data=dat,kernel="1inear",

SVM classification plot

ranges=1ist (cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
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SVM EXAMPLE

tune.out = tune(svm,Y”.,data=dat,kernel="radial",
gamma=c (1,2),
ranges=1list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))

SVM classification plot
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SVM EXAMPLE

tune.out

degree=c(3,5,10),

tune(svm,Y".,data=dat,kernel="polynomial",

SVM classification plot

ranges=1ist(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
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SVM EXAMPLE

SVM classification plot

SVM classification plot

SVM classification plot
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Multiclass classification
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MuLTICLASS SVMS

Sometimes, it becomes necessary to do multiclass classification

There are two main approaches:

e One-versus-one

e One-vesus-all
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MurTticLASS SVMSs: ONE-VERSUS-ONE

Here, for G possible classes, we run G(G — 1)/2 possible
pairwise classifications

For a given test point X, we find gx(X) for
k=1 ...,G(G —1)/2 fits

The result is a vector G € R® with the total number of times
X was assigned to each class

N\

We report g(X) = argmax, G

This approach uses all the class information, but can be slow
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MurTticLASS SVMs: ONE-VESUS-ALL

Here, we fit only G SVMs by respectively collapsing over all
size¢ G — 1 subsets of {1,..., G}

(This is compared with G(G — 1)/2 comparisons for one-versus-one) Take all

he(X) for g =1,..., G, where class g is coded 1 and “the
rest” is coded -1

Assign g(X) = arg max, he(X)

(Note that these strategies can be applied to any classifier)
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