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KERNEL METHODS

INTUITION: Many methods have linear decision boundaries

We know that sometimes this isn’t sufficient to represent data

ExaMpPLE: Sometimes we need to included a polynomial
effect or a log transform in multiple regression

Sometimes, a boundary, but in a different space makes
all the difference..



OPTIMAL SEPARATING HYPERPLANE

REMINDER: The Wolfe dual, which gets maximized over «,
produces the

Wolf dual = Za, — lzzaakv Y X X,

i=1 k=1

(this is all subject to a;; > 0)

A similar result holds after the introduction of slack variables
(es. )

IMPORTANT: The features only enter via

XX = (X, X



(KERNEL) RIDGE REGRESSION
REMINDER: Suppose we want to predict at X, then

f(X) = XTﬂAridge,)\ = XTXT(XXT + )\/)71Y
Also,

<X17X1> <X17X2> T <X1,X,,>
XX = :
<Xna X1> <Xna X2> e <Xna Xn>

and
XTXT = [<X7X1>7 <X>X2>7 U 7<X7Xn>]

Again, we have the covariates enter only as

(X, X"y =X"X



LOGISTIC REGRESSION: TRANSFORMATIONS

Let's look at the default data in “Introduction to Statistical
Learning”

In particular, we will look at default status as a function of
balance and income
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LOGISTIC REGRESSION: TRANSFORMATIONS

out.glm = glm(default~balance + income,family=’binomial’)
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LOGISTIC REGRESSION: TRANSFORMATIONS

out.glm = glm(default~balance + income +
I(income~2) ,family=’binomial’)
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CONCLUSION: A Linear rule in a transformed space can have
a nonlinear boundary in the original features



LOGISTIC REGRESSION: TRANSFORMATIONS

REMINDER: The logistic model: untransformed

logit(P(Y = 1|X)) = 5o + BT X
= [y + P1balance + Srincome

The decision boundary is the hyperplane {X : 5o + 87X = 0}

This is in the feature space



LOGISTIC REGRESSION: TRANSFORMATIONS
Adding the polynomial transformation ®(X) = (x1, %2, X3):
logit(P(Y = 11X)) = fo + 8 ®(X)

= [y + Pibalance + [rincome + [zincome
Decision boundary is still a hyperplane {X: 3, + 8T ®(X) = 0}

2

This is nonlinear in the feature space!
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LOGISTIC REGRESSION: TRANSFORMATIONS

Of course, as we include more transformations,

e We need to choose the transformations

° can become difficult if we aren't careful
(ExampPLE: Solving the least squares problem takes something like np?

computations)

e We need to to prevent overfitting

Can we form them in an automated fashion?
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Kernel Methods



NONNEGATIVE DEFINITE MATRICES

Let A € RP*P be a symmetric, nonnegative definite matrix:
z'Az>0forallz and AT = A

Then, A has an eigenvalue expansion
P
A=UDU" = diuu]
j=1

where d; > 0

OBSERVATION: Each such A, generates a new inner product

(2,2 =2"Z=2" | =z
~—
Identity

(z,2)a=2"AZ

/

(If we enforce A to be positive definite, then (z,z)4 = ||2||3,is a norm)
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NONNEGATIVE DEFINITE MATRICES

Suppose A/ is the (i, /) entry in A, and A; is the i" row

Al Al z
Az=| 1 | z= :
T T
A, A,z
NoTE: Multiplication by A is really taking with

its rows.

Hence, A; is called the (multiplication) kernel of matrix A
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KERNEL METHODS

k: X x X — Ris a symmetric, nonnegative definite kernel

Write the eigenvalue expansion of k as

k(X, X') = Zeﬂpl )i (X"

with
o 9 > O (nonnegative definite)
OO 2
H J 1”2 J 101 <

e The ¢; are orthogonal eigenfunctions: [ ¢;¢; = d;

(This is called Mercer's theorem, and such a k is called a Mercer kernel)
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KERNEL: EXAMPLE

Back to polynomial terms/interactions:

Form
kg(X, X') = (XTX' + 1)

ky has M = (pigd) eigenfunctions

These the space of polynomials in RP with degree d
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KERNEL: EXAMPLE
ExavprLE: Letd=p=2= M =6 and

k(u,v) =14 2wy + 2upvs + U2V 4 133 + 2uiUsvi va

where

(D(V)T = (17 \/§V17 \/§V27 V127 V227 \/§V1 V2)

IMPORTANT: These equalities are that makes
kernelization work!
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KERNEL: CONCLUSION
Let's recap:

k(u,v) =14 2uvi + 2uavy + U2v2 + U3vE + 2u1thvivo

= (®(u), &(v))

e Some methods only involve features via inner products
XTX' = (X, X")
(We've explicitly seen two: ridge regression and support vector classifiers)

e If we make transformations of X to ®(X), the procedure
depends on ®(X)Td(X') = (d(X), (X))
e CRUCIAL: We can compute this inner product via the

kernel:
k(X, X') = (®(X), ¢(X"))
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KERNEL: CONCLUSION

Instead of creating a very high dimensional object via
transformations, choose a kernel k

Now, the only thing left to do is form the of
kernel evaluations

K = [k(X;, X )]1§i,i'§n

x =c¢(1,2,3)# n =3
k = function(x,y){ return(x + y + xx*y)}
> outer(x,x,k)
[,1]1 [,2] [,3]
[1,] 3 5 7
[2,] 5 8 11
[3,] 7 11 15
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(Kernel) SVMs



KERNEL SVM

RECALL:
1 n
S 11 = Dl Yi(X "6+ o) = 1]
i=1

Derivatives with respect to 5 and [y imply:
o 3= Z;’:l ;Y X;
e 0=, Y
Write the solution function
h(X) = o+ B"X = o+ Y a;YiX X
i=1

Kernelize the support vector classifier = support vector
machine (SVM):

60+Za,Yk (X;, X)
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GENERAL KERNEL MACHINES
After specifying a kernel function, it can be shown that many
procedures have a solution of the form

f(X) = ny,-k(X, X;)

For some v1,...,7,

Also, this is equivalent to performing the method in the space
given by the of k

k(u,v) = Z 0;0;(u)e;(v)

Also, (the) feature map is

S =[p1,...,0p..]
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KERNEL SVMSs

Hence (and luckily) specifying @ itself unnecessary,

(Luckily, as many kernels have difficult to compute eigenfunctions)

We need only define the that is symmetric, positive
definite

Some common choices for SVMs:
e PoLyNOMIAL: k(x,y) = (1+x"y)?

b
e RADIAL BASIS: k(x,y) = e Tkl

(For example, b = 2 and 7 = 1/(252) is (proportional to) the Gaussian density)
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KERNEL SVMS: SUMMARY
the solution form for SVM is

p= i a; YiX;
i=1

Kernelized, this is

B = Z o, Yid(X
i=1

Therefore, the induced hyperplane is:

h(X) = ®(X)" 8+ Bo = Zav X)) + Bo

= Z @ Yik(X, X)) + fo

i=1

The final classification is still (X) = sgn(h(X))
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SVMs via penalization
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SVMS VIA PENALIZATION

NoTE: SVMs can be derived from methods

The support vector classifier optimization problem:
1 2
= A ; subject t
min 5 181]5 + Zé subject to
Yih(X;) > 1—-¢;,& > 0,, for each i

Writing h(X) = ®(X) 3 + f3y, consider

mmZ[l = Yih(Xi)ls + 7115113

These optimization problems are the same!
(With the relation: 2A = 1/7)
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SVMS VIA PENALIZATION

The part is the hinge loss function
(X, Y) = [1 = Yh(X)L-

The hinge loss approximates the zero-one loss function
underlying classification

It has one major advantage, however:
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SURROGATE LOSSES: CONVEX RELAXATION
Looking at

mmZ[l— Yih(X)]+ + 7118113

It is tempting to minimize (analogous to linear regression)

Zl (i # &(X)) + 11811
However, this is (in u=h(X)Y)

A common trick is to approximate the objective
with a convex one

(This is known as convex relaxation with a surrogate loss function)
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SURROGATE LOSSES

IDEA: We can use a surrogate loss that mimics this function
while still being convex

It turns out we have already done that! (twice)
o HincE: [1 — Yh(X)]+
o LOGISTIC: log(1 + e~ Yh(X))
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SURROGATE LOSSES

Logistic loss

29



SVMS IN PRACTICE

(GENERAL FUNCTIONS: The basic SVM functions are in the
C++ library libsvm

R PACKAGE: The R package 1071 calls libsvm
PATH ALGORITHM: svmpath

For a nice comparison of these approaches, see “Support
vector machines in R”
(http://www.jstatsoft.org/v15/i09/paper)
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SVM EXAMPLE

tune.out = tune(svm,Y”.,data=dat,kernel="linear",
ranges=1ist(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))

SVM classification plot
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SVM EXAMPLE

tune.out =

gamma=c(1,2),

tune(svm,Y~.,data=dat,kernel="radial",

SVM classification plot

ranges=1list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))




SVM EXAMPLE

tune.out =

tune(svm,Y”.,data=dat,kernel="polynomial",
degree=c(3,5,10),

SVM classification plot

ranges=1list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
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SVM EXAMPLE

SVM classifcation plot SVM classifcation plot SVM classifcation plot
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Multiclass classification
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MvurTIicLASS SVMs

Sometimes, it becomes necessary to do multiclass classification

There are two main approaches:

e One-versus-one

e One-vesus-all
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MULTICLASS SVMS: ONE-VERSUS-ONE

Here, for G possible classes, we run G(G — 1)/2 possible
pairwise classifications

For a given test point X, we find gx(X) for
k=1,...,G(G—1)/2 fits

The result is a vector G € RC with the total number of times
X was assigned to each class

A

We report g(X) = argmax, G

This approach uses all the class information, but can be slow

37



MULTICLASS SVMS: ONE-VESUS-ALL

Here, we fit only G SVMs by respectively collapsing over all
size G — 1 subsets of {1,...,G}
(This is compared with G(G — 1)/2 comparisons for one-versus-one) Take all

~

he(X) for g =1,..., G, where class g is coded 1 and “the
rest” is coded -1

~

Assign g(X) = arg max, hy(X)

(Note that these strategies can be applied to any classifier)
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