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Optimal separating hyperplanes

A main initiative in early computer science was to find
separating hyperplanes among groups of data
(Rosenblatt (1958) with the perceptron algorithm)

The issue is that if there is a separating hyperplane, there is an
infinite number

An optimal separating hyperplane can be generated by finding
support points and bisecting them.
(Sometimes optimal separating hyperplanes are called maximum margin classifiers)
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Basic linear geometry

A hyperplane in Rp is given by

H = {X ∈ Rp : h(X ) = β0 + β>X = 0}

(Usually it is assumed that ||β||2 = 1)

1. The vector β is normal to H
(To see this, let X ,X ′ ∈ H. Then β>(X − X ′) = 0)

2. Important: For any point X ∈ Rp, the (signed) length
of its orthogonal complement to H is h(X )
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Support vector machines (SVM)

Let Yi ∈ {−1, 1}
(It is common with SVMs to code Y this way. With logistic regression, Y is

commonly phrased as {0, 1} due to the connection with Bernoulli trials)

We will generalize this to supervisors with more than 2 levels
at the end

A classification rule induced by a hyperplane is

g(X ) = sgn(X>β + β0)
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Separating hyperplanes

Our classification rule is based on a hyperplane H

g(X ) = sgn(X>β + β0)

A correct classification is one such that h(X )Y > 0 and
g(X )Y > 0
(Why?)

The larger the quantity Yh(X ), the more “sure” the
classification
(Reminder: The signed distance to H is h(X ))

Under classical separability, we can find a function such that
Yih(Xi) > 0
(That is, makes perfect training classifications via g)

5



Optimal separating hyperplane

This idea can be encoded in the following convex program

max
β0,β

M subject to

Yih(Xi) ≥ M for each i and ||β||2 = 1

Intuition:

• We know that Yih(Xi) > 0 ⇒ g(Xi) = Yi . Hence, larger
Yih(Xi) ⇒ “more” correct classification

• For “more” to have any meaning, we need to normalize
β, thus the other constraint
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Optimal separating hyperplane

Let’s take the original program:

max
β0,β

M subject to

Yih(Xi) ≥ M for each i and ||β||2 = 1

and rewrite it as

min
β0,β

1

2
||β||22 subject to

Yih(Xi) ≥ 1 for each i

(Replace Yih(Xi ) ≥ M with 1
||β||2

Yih(Xi ) ≥ M, which redefines β0)

This is still a convex optimization program: quadratic
criterion, linear inequality constraints
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Optimal separating hyperplane

Again, we can convert this constrained optimization problem
into the Lagrangian (primal) form

min
β0,β

1

2
||β||22 −

n∑
i=1

αi [Yi(X
>
i β + β0)− 1]

In contrast to the lasso problem, there are now n Lagrangian
parameters α1, . . . , αn

(There are n constraints, after all)

Everything is nice and smooth, so we can take derivatives..
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Optimal separating hyperplane

1

2
||β||22 −

n∑
i=1

αi [Yi(X
>
i β + β0)− 1]

Derivatives with respect to β and β0:

• β =
∑n

i=1 αiYiXi

• 0 =
∑n

i=1 αiYi

Substituting into the Lagrangian:

wolfe dual =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
k=1

αiαkYiYkX
>
i Xk

(this is all subject to αi ≥ 0)

We want to maximize wolfe dual
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Optimal separating hyperplane

A side condition, known as complementary slackness states1:

αi [1− Yih(Xi)] = 0 for all i

(The product of Lagrangian parameters and inequalty constraint equals 0)

This implies either:

• αi = 0, which happens if the constraint Yih(Xi) > 1
(That is, when the constraint is non binding)

• αi > 0, which happens if the constraint Yih(Xi) = 1
(That is, when the constraint is binding)

1See the Karush-Kuhn-Tucker (KKT) conditions
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Optimal separating hyperplane

Taking this relationship

αi [Yih(Xi)− 1] = 0

we see that, for i = 1, . . . , n,

• The points (Xi ,Yi) such that αi > 0 are support vectors

• The points (Xi ,Yi) such that αi = 0 are irrelevant for
classification

(Why?)

End result: ĝ(X ) = sgn(X>β̂ + β̂0)
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Support vector classifier
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Support vector classifier

Of course, we can’t realistically assume that the data are
linearly separated (even in a transformed space)

In this case, the previous program has no feasible solution

We need to introduce slack variables, ξ, that allow for overlap
among the classes

These slack variables allow for us to encode training
missclassifications into the optimization problem
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Support vector classifier

max
β0,β,ξ1,...,ξn

M subject to

Yih(Xi) ≥ M (1− ξi), ξi ≥ 0,
∑

ξi ≤ t︸ ︷︷ ︸
new

, for each i

Note that

• t is a tuning parameter. The literature usually refers to t
as a budget
(Think: lasso)

• The separable case corresponds to t = 0
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Support vector classifier
We can rewrite the problem again:

min
β0,β,ξ

1

2
||β||22 subject to

Yih(Xi) ≥ 1−ξi , ξi ≥ 0,
∑

ξi ≤ t︸ ︷︷ ︸
new

, for each i

(Convex optimization program: quadratic criterion, linear inequality constraints.)

Converting
∑
ξi ≤ t to the Lagrangian (primal):

min
β0,β

1

2
||β||22 + λ

∑
ξi subject to

Yih(Xi) ≥ 1− ξi , ξi ≥ 0, for each i

(Think: lasso. λ
∑
ξi + ξi ≥ 0⇒ λ ||ξ||1)
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SVMs: slack variables

The slack variables give us insight into the problem

• If ξi = 0, then that observation is on correct the side of
the margin

• If ξi =∈ (0, 1], then that observation is on the incorrect
side of the margin, but still correctly classified

• If ξi > 1, then that observation is incorrectly classified
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Support vector classifier

Continuing to convert constraints to Lagrangian

min
β0,β,ξ

1

2
||β||22+λ

∑
ξi −

n∑
i=1

αi [Yi(X
>
i β + β0)− (1− ξi)]−

n∑
i=1

γiξi︸ ︷︷ ︸
remaining constraints

Necessary conditions (taking derivatives)

• β =
∑n

i=1 αiYiXi

• 0 =
∑n

i=1 αiYi

• αi = λ− γi
(As well as positivity constraints on Lagrangian parameters)
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Support vector classifier

Substituting, we reaquire the Wolfe dual

This, combined with the KKT conditions uniquely characterize
the solution:

max
α subject to: KKT + Wolfe dual

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i ′=1

αiαi ′YiYi ′X
>
i Xi ′

(See Chapter 12.2.1 in “Elements of Statistical Learning”)

Note: the necessary conditions β =
∑n

i=1 αiYiXi imply
estimators of the form

• β̂ =
∑n

i=1 α̂iYiXi

• β̂>X =
∑n

i=1 α̂iYiX
>
i X
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SVMs: tuning parameter

We can think of t as a budget for the problem

If t = 0, then there is no budget and we won’t tolerate any
margin violations

If t > 0, then no more than btc observations can be
misclassified

A larger t then leads to larger margins
(we allow more margin violations)
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SVMs: tuning parameter

Further intuition:

Like the optimal hyperplane, only observations that violate the
margin determine H

A large t allows for many violations, hence many observations
factor into the fit

A small t means only a few observations do

Hence, t calibrates a bias/variance trade-off, as expected

In practice, t gets selected via cross-validation
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SVMs: tuning parameter

Figure 9.7 in ISL
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Support vector classifier in R
A common package to use is e1071

X = matrix(rnorm(20*2),ncol=2)

Y = c(rep(-1,10),rep(1,10))

X[Y == 1,] = X[Y == 1,] + 1

col = rep(0,length(Y))

col[Y == -1] = rainbow(2)[1]

col[Y == 1] = rainbow(2)[2]

pch = rep(0,length(Y))

pch[Y == -1] = 16

pch[Y == 1] = 17

plot(X,col=col,pch=pch)
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Support vector classifier in R
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Support vector classifier in R

library(e1071)

dat =data.frame(X=X, Y=as.factor(Y))

svmfit=svm(Y~., data=dat, kernel="linear", cost=cost)

Important: Their definition of cost is the Lagrangian
version, which we defined as λ

Hence, a small cost means a large t and a wider margin
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Support vector classifier in R
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Support vector classifier in R

tune.out = tune(svm,Y~.,data=dat,kernel="linear",

ranges=list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))

best.model = tune.out$best.model

Note that best.model is an svm object:
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Next time: Kernel methods

Intuition: Many methods have linear decision boundaries

We know that sometimes this isn’t sufficient to represent data

Example: Sometimes we need to included a polynomial
effect or a log transform in multiple regression

Sometimes, a linear boundary, but in a different space makes
all the difference..
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