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AN OVERVIEW OF CLASSIFICATION

Some examples:

e A person arrives at an emergency room with a set of
symptoms that could be 1 of 3 possible conditions.
Which one is it?

e A online banking service must be able to determine

whether each transaction is fraudulent or not, using a
customer's location, past transaction history, etc.

e Given a set of individuals sequenced DNA, can we
determine whether various mutations are associated with
different phenotypes?

All of these problems are regression problems. They are
problems.



THE SET-UP

It begins just like regression: suppose we have observations

D= {(X, Y1), ..., (Xn, Ya)}

Again, we want to estimate a function that maps X into Y
that helps us predict as yet observed data.

(This function is known as a classifier)

The same constraints apply:

e We want a classifier that predicts test data, not just the
training data.

e Often, this comes with the introduction of some bias to
get lower variance and better predictions.



How DO WE MEASURE QUALITY?

In regression, we have Y; € R and use squared error loss

Instead, let Y € G ={1,...,G}

(This is arbitrary, sometimes other numbers, such as {—1, 1} will be used)
We again make predictions Y based on D

Our loss function is now a G X G matrix L with

e zeros on the diagonals
e /(g,g’) on the off diagonal (g # g’)



How DO WE MEASURE QUALITY?

Again, we appeal to risk
R(&) = Ez{g(2)

If we use the law of total probability, this can be written

Exzé X)B(Y = y|X)

This can be minimized point wise over X, to produce

—argman€ P(Y = y|X)

g€g _

(This is the Bayes’ classifier. Also, R(gx«) is the Bayes’ limit)
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BEST CLASSIFIER

If we make specific choices for ¢, we can find g, exactly

As Y takes only a few values, prediction risk is
natural

le(Z) = Lygx)(Z) = R(g) = E[(¢(2)] = P(g(X) # V),

(This means we want to label or classify a new observation (X, Y) such that

g(X) =Y as often as possible)
Under this loss, we have

g«(X) =argmin[1 —P(Y = g|X)] = argmaxP(Y = g|X)
geg

geg



BEST CLASSIFIER

Suppose we encode a two-class response as Y € {0,1}
Let's continue to use cle(Z2) = (Y = £(X))?
Then, the Bayes' rule is
f.(X) = E[Y|X] =P(Y = 1|X)
(using f as it references squared error loss)

Hence, we achieve the same Bayes' rule/limit with squared
error classification by discretizing the probability:

8:(X) = 1(£.(X) > 1/2)



CLASSIFICATION IS EASIER THAN
REGRESSION

Let f be any estimate of f,
Let g(X) = 1(f(X) > 1/2)
[t can be shown that

PCY # (X)|1X) = P(Y # g.(X)1X) =
= (2£.(X) = D)(1(&(X) = 1) — 1(&(X) = 1))
= [2£.(X) — 1[1(g.(X) # &(X))

—2lh0x) - %’ 1(g.(X) # §(X)

[CAN YOU SHOW THIS?]



CLASSIFICATION IS EASIER THAN
REGRESSION

Now

~

g.(X) # &(X) = |F(X) = £.(X)| = [F(X) - 1/2]

Therefore
P(Y #800) ~ B(Y £ £.(X) =
= [(®(Y £ 001X) - B(Y £ 8.(X)X)dPs
/ 1
2
<2/|f ) — f(X)|1(g(X) # &(X))dPx

<2 [ 100 - £.0x)]dPx

2|F(X) -

' 1(e.(X) # 8(X))dPx



CLASSIFICATION IS EASIER THAN

REGRESSION
Now

8.(X) # 8(X) = [f(X) — £.(X)| > |F(X) - 1/2]
Therefore

P(Y # &(X)) = P(Y # g.(X)) =
- / (B(Y # &(X)|X) — P(Y # g.(X)|X))dPx

= [ 2700~ 5| 1200 # 20097
<2 [ |70 ~ £(X)[1(eX) # 8(X)dPx

< 2/|f(X) — £,(X)|dPx

(If f gets close to fi on average, we do good classifications. The converse is true)



BAYES’ RULE AND CLASS DENSITIES

Using Bayes' theorem

£(X) = B(Y = 1|X)
XY = 1)B(Y =1)
T Y geony PXTY = g)B(Y =g)
B A(X)m
CAX)T + (X)L —7)

We call f;(X) the class densities

The Bayes' rule can be rewritten

A(X) o 1-x
{1 if ()>

* X) =
&(X) 0 otherwise
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How TO FIND A CLASSIFIER

All of these prior expressions for g, give rise to classifiers

e EIMPIRICAL RISK MINIMIZATION: Choose a set of
classifiers I and find g € I' that minimizes some estimate
of R(g)

(This can be quite challenging as, unlike in regression, the training error is
nonconvex)

e RECGRESSION: Find an estimate # and plug it in to the
Bayes' rule

e DENSITY ESTIMATION: Estimate 7 and f, from D
where Y = g and

11
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LINEAR CLASSIFIER

As our classifier g takes a discrete number of values, it is
equivalent to partitioning the covariate space into

The boundaries between these regions are known as decision
boundaries

These decision boundaries are sets of points at which g is
indifferent between two (or more) classes

A linear classifier is a g that produces linear decision
boundaries
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LINEAR CLASSIFIER: EXAMPLE
Suppose G = {0,1} and we form the GLM logistic regression

The posterior probabilities are

exp{fo + B' X}
P(Y =1|X) =
( 1X) 1+ exp{f+ 5T X}
1
P(Y =0|X) =
( %) 1+ exp{fBo+ ST X}
The (i.e.: log odds) transformation forms a linear
decision boundary
P(Y = 1X) .
log [ 120 — X
o (sv=om) =+

The decision boundary is the hyperplane {X : 5y + ' X = 0}

(Log-odds below 0, classify as 0, above 0 classify as a 1)
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LINEAR CLASSIFIER: EXTENSIONS

The term “linear classifier" can be used to describe a classifier
that has linear decision boundaries in a

space, but which as a nonlinear decision boundary in the
original covariate space

For instance, if | include as features:

2 2
X17...,Xp,XlXQ,...,Xle...

and thereby add p(p + 1)/2 additional features, a linear
classifier in this enhanced space will be (and in fact
quadratic) in the original covariates

This is a parametric kernel method
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BAYES’ RULE-IAN APPROACH

The decision theory for classification indicates we need to
know the posterior probabilities: P(Y = g|X) for doing
optimal classification

Suppose that
o p(X)=P(X|Y = g) is the of the covariates
given the class labels
e 1, =P(Y = g) is the prior
Then

Pe(X) 7,
deg Pe(X) g
CONCLUSION: Having the class densities almost gives us the
Bayes' rule as the training proportions can usually be used to
estimate 7,

P(Y = g|X) =

X pg(X)mg

(Though, sometimes estimating 7z can be nontrivial /impossible)
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BAYES’ RULE-IAN APPROACH: SUMMARY

There are many techniques based on this idea

e Linear/quadratic discriminant analysis

(Estimates pg assuming multivariate Gaussianity)
e General nonparametric density estimators

e Naive Bayes (Factors pg assuming conditional independence)
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DISCRIMINANT ANALYSIS

Suppose that

pe(X) oc [Zg| 2 (X—he) 55" (X=15)/2

Let's assume that

Then the log-odds between two classes g, g’ is:

]P’(ng\x)> pe(X) g
log (— = log —=—% + log —=
P(Y = g'|X) pe(X) Ty’
7r _
= log W_g/ — (g + 11g") "E 7 (g — p1g7)/2
g

+ XTZ*l(Ng — Iig')

This is linear in X, and hence has a linear decision boundary
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TYPES OF DISCRIMINANT ANALYSIS

The linear discriminant function is (proportional to) the log
posterior:

6¢(X) =logmg + XTZ g — u;Z_lﬂgﬂ
and we assign g(X) = argmin, d,(X)

(This is just minimum Euclidean distance, weighted by the covariance matrix and prior

probabilities)
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LINEAR/REGULARIZED DISCRIMINANT
ANALYSIS

Now, we must estimate ji, and X. If we...

e use the intuitive estimators fi, = 7g and

£ LSS (X )

geg icg

then we have produced (LDA)

e regularize these ‘plug-in' estimates, we can form
(Friedman (1989)). This
could be (for A € [0, 1]):

Sy = AL+ (1—)\)52
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LDA INTUITION

How would you classify a point with this data?

We can just classify an observation to the mean (X,)

What do we mean by close? (Need to define distance)
21



LDA INTUITION

Intuitively, assigning observations to the nearest 7g (but
ignoring the covariance) would amount to

g(X) = argmin [|X — X,l[3
g

— argmin XX — 2X "X, + X, X,
g

_ 1—7—
= argmin —XTXg + §X;Xg
g

A 1—7 A~ —
g = argmin X5 X, — Ex;zglxg +log(#,)
g L, =

' I
likelihood prior

The difference is we weight the distance by )i;l and weight

the class assignment by fraction of observations in each class.

(Note: this generalization of Euclidean distance is called Mahalanobis distance)
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INTUITION

What if the data looked like this?
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INTUITION

What if the data looked like this?
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INTUITION

Or this?

-10 -5 0 5 10
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INTUITION

Or this?
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INTUITION

How about this?
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INTUITION

How about this?
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INTUITION

What about now?
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INTUITION

What about now?
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PERFORMANCE OF LDA

The quality of the classifier produced by LDA depends on two
things:

e The sample size n

(This determines how accurate the #g, fig, and 3 are)

e How wrong the LDA assumptions are

(That is: X|Y = g is a Gaussian with mean pg and variance X))

RecALL: The of a classifier are the values
of X such that the classifier is between two (or
more) levels of Y

A decision boundary is when this set of values looks like
a line
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LDA: UNDER CORRECT ASSUMPTIONS

10
1

—— Bayes'rule
--- LDA

FIGURE: For ng =10
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LDA: UNDER CORRECT ASSUMPTIONS

10
|

—— Bayes'rule
-- LDA

FIGURE: For ng = 100
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LDA: UNDER CORRECT ASSUMPTIONS

—— Bayes'rule
--- LDA

FIGURE: For ng = 1000
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LDA: MILDLY INCORRECT ASSUMPTIONS

10
1

FIGURE: For ng =10

31



LDA: MILDLY INCORRECT ASSUMPTIONS

10
1

FIGURE: For ng = 100
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LDA: MILDLY INCORRECT ASSUMPTIONS

FIGURE: For ng = 1000
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LDA: VERY INCORRECT ASSUMPTIONS

10
1

FIGURE: For ng =10
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LDA: VERY INCORRECT ASSUMPTIONS

10
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FIGURE: For ng = 100
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LDA: VERY INCORRECT ASSUMPTIONS

-10 -5 0 5 10

FIGURE: For ng = 1000

36



THE LDA VARIANCE ASSUMPTION

Returning to the assumption: >, = X

The assumption provides two benefits:

e Allows for estimation when n large compared with

Gp(p +1)/2
e Lowers the variance of the procedure (but produces bias)

(This can be seen by the estimation of fewer parameters)

Different )A:g All same 3
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THE LDA VARIANCE ASSUMPTION

However, when n is large compared with Gp(p + 1)/2
(Say, minng > 40p(p +1)/2)

Then the induced bias can outweigh the variance

(This is hard to determine. Usually compare the prediction error on test set)

We relax the assumption and let X|Y = g have
e mean i,

e variance >,

This makes the decision boundary

(Instead of linear)
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Quadratic Discriminant
Analysis
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QUADRATIC DISCRIMINANT ANALYSIS

If we drop the assumption regarding equal covariances, we get:

Ts-1 Ts-1
0g(X) =logmg + X X, g — pg X, pig/2 — log |Xg[/2
(Xg can be estimated by the sample covariance of the observations in group g)
This produces quadratic discriminant analysis (QDA)

In my experience, QDA works well if n is large relative to p

(However, it isn't often computable in practice; too many parameters)

We can augment regularlzed discriminant analysis to shrink
each Z to 3 or even to ZA

ig,(%/\) = Vig +(1— V)i/\

(To the best of my knowledge, little is formally known about this procedure. See Guo

et al. (2006) for an empirical comparison )
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QDA: MORE FLEXIBILITY THAN NEEDED

—— Bayes'rule
---- QDA

-10

F1GURE: For ng = 100. Note linear Bayes' rule, nonlinear QDA
decision boundary



QDA: MORE FLEXIBILITY THAN NEEDED

—— Bayes'rule
---- QDA

-10

F1GURE: For ng = 300. Note linear Bayes' rule, nonlinear QDA
decision boundary
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QDA: MORE FLEXIBILITY

—— Bayes'rule
---- QDA

FIGURE: For ng = 2000. Note linear Bayes' rule. The nonlinear

-10

QDA decision boundary has converged to Bayes' rule

THAN NEEDED
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QDA: DIFFERENT X, ASSUMPTION NEEDED

S 4 —— Bayes'rule
. ---- QDA
‘\

8 o
A
T‘ L T T T T T
10 5 0 5 10
X1
FIGURE: For ng = 100. Note Bayes' rule, nonlinear

QDA decision boundary
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QDA: DIFFERENT X, ASSUMPTION NEEDED

S 4 —— Bayes'rule
---- QDA
o

2 o
A
T‘ L T T T T T
-10 -5 0 5 10
X1
FIGURE: For ng = 300. Note Bayes' rule, nonlinear

QDA decision boundary
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QDA: DIFFERENT X, ASSUMPTION NEEDED

FIGURE: For ng = 2000. Note
QDA decision boundary

10

Bayes' rule, nonlinear
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LDA vs. QDA: UNDER CORRECT
ASSUMPTIONS

FIGURE: For ng =100
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LDA vs. QDA: VERY INCORRECT
ASSUMPTIONS

X2

X1 X1

FIGURE: LDA ng = 1000, QDA ng, = 2000
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LDA 1IN R

We can do this readily in R

library (MASS)
lda.fit = 1lda(Y~.,data=X)

> names(lda.fit)

[1] "prior" "counts" "means" "scaling" "lev" "svd"....

out = predict(lda.fit,X_0)

> out$posterior[1:3,]

1 2 3
1 0.9999908 9.215567e-06 1.504633e-55
2 0.9999977 2.341924e-06 1.664446e-54
3 0.9999994 5.951430e-07 1.841223e-53
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WHAT DOES POSTERIOR MEAN?Y

> print(predict(lda.fit,X_0)$posterior)
1 2 3
1 0.04883796 0.9477494 0.003412639
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Reduced rank LDA



REDUCED RANK LDA

Part of the popularity of LDA is that it provides
as well

The G class centroids 1z must all lie in an affine subspace of
dimension G — 1 (presuming G < p)

(Let Hg_1 be this subspace)

If G is much less than p, this will be a substantial drop in
dimension
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REDUCED RANK LDA

In practice, we can compute LDA from spectral information:

5g(X) =logmg + X X g — pg T g /2
o log g + (X — p1g) "EH(X — 115) /2

So,
1. SPECTRUM: Form ¥, = UDUT
2. SPHERE: Rewrite your data as X < D~Y2UT X

3. Assian: Classify to the closest mean in transformed
space
(Penalizing by estimate of prior probability)
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REDUCED RANK LDA

We can ignore any information orthogonal to H¢s_1, as it
contributes to each class equally (in the sphered space)

So, project X onto H¢_1 and make distance computations
there

When G = 2,3, this means we can plot the projection onto
H_1 with no loss of information about the LDA solution

If G > 3, then we may wish to project onto a space
Hi CHe

We'd like H; to maintain the most amount of information
possible for assigning to classes



REDUCED RANK LDA

This can be done via the following procedure

1.
2. COVARIANCE: Form ¥ as the common covariance matrix
3.

4. BETWEEN COVARIANCE: Find covariance matrix for M,

d.

CeNTROIDS: Compute G X p matrix M of class centroids
SPHERE: M = ML ~1/2

callit B
SrecTRUM Compute B = VSV'T

Now, span(V}) = H,

Also, the coordinates of the data in this space are
Z, = vaZ‘l/zX

These derived variables are commonly called canonical
coordinates
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REDUCED RANK LDA: SUMMARY

e Gaussian likelihoods with identical covariances leads to
linear decision boundaries (LDA)

e We can actually do all relevant computations/graphics on
the reduced space Hg_1

e If this isn't small enough, we can do ‘optimal’ dimension
reduction to H;

As an aside, this procedure is identical to Fisher's discriminant
analysis
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LOGISTIC REGRESSION

Logistic regression for two classes simplifies to a likelihood:
(Using m;(8) = P(Y = 1|]X = X;, §))

n

(B) = (Yilog(mi(8)) + (1 — Vi) log(1 — m(5)))

i=1

=3 (Vilog(e? ¥ /(14 ¢ X)) — (1= Vi) log(1 + &)

i=1

_ ; (Y,-gTX,- ~log(1 + €” Xf))

This gets optimized via Newton-Raphson updates and
iteratively reweighed least squares
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SPARSE LOGISTIC REGRESSION

This procedure suffers from all the same problems as least
squares

We can use penalized likelihood techniques in the same way as
we did before

This means maximizing (over (3o, f):

n

S (YilBo + B7X) ~log(L+ 7)) ~A(alBlli+ (1) 8]13)

i=1

(Don’t penalize the intercept and do standardize the covariates)

This is the logistic elastic net
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SPARSE LOGISTIC REGRESSION: SOFTWARE

Using the R package glmnet finds the minimum CV solution
over a grid of A values

Unfortunately, the computations are more difficult for path
algorithms (such as the lars package) due to the coefficient
profiles being only piecewise smooth

glmpath is an R package that does quadratic approximations
to the profiles, while still computing the exact points at which
the active set changes

(Park, Hastie (2007). It is necessary to set a 'step’ size argument for the

approximation.)
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LocgisTic VERSUS LDA

The log posterior odds via the Gaussian likelihood ( ) for
class g versus G are

P(Y = g|X) 7r -
log —— % =log < — (i c) T — lg)/2
BBy —GX) e (g + 16) 2 (g — pi6)/
+ X7
= ()ég70 + TX
Likewise, multi class follows (for g =1,...,G —1):
P(Y = g|X) T
log ——— >~ = X
BBy =cx) =0t

(The choice of base class G is arbitrary)

THEY BOTH SPECIFY THE LOG-ODDS AS: LINEAR-MODELS!
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LogGisTic VERSUS LDA
We can write the joint distribution of Y and X as

P(X, Y) = P(Y|X)P(X)

The previous slide shows that P(Y|X) is the same for both
methods:

eag,() +a;X

G-1 T
1 _I_ Zk:]. eak’0+ak X

P(Y = g|X) =

e Logistic regression leaves P(X) arbitrary, and implicitly
estimates it with the empirical measure
(This could be interpreted as a approach, where we are maximizing

the likelihood only and using the improper uniform prior)

e LDA models
P(X,Y =g)=P(X|Y =g)P(Y = g) = N(X; p1g, X)7g
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LocgisTic VERSUS LDA

Some remarks:
e Forming requires fewer assumptions

e The MLEs under will be undefined if the classes
are perfectly separable

e If some entries in X are qualitative, then the modeling
assumptions behind are suspect

e In practice, the two methods tend to give very similar
results
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