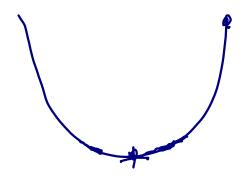
BOOSTING 3: IMPLEMENTATIONS

-STATISTICAL MACHINE LEARNING-



Lecturer: Darren Homrighausen, PhD

OUTLINE

Now we will discuss two current, popular algorithms and their R implementations

- GBM
- XGBoost

GBM

Gradient Boosting Machines (GBM)

RECALL: AdaBoost effectively uses forward stagewise minimization of the exponential loss function

GBM takes this idea and

- generalizes to other loss functions
- adds subsampling
- includes methods for choosing B
- reports variable importance measures

GBM: Loss functions

- gaussian: squared error
- laplace: absolute value
- bernoulli: logistic
- adaboost: exponential
- multinomial: more than one class (unordered)
- poisson: Count data
- coxph: For right censored, survival data

GBM: SUBSAMPLING

Early implementations of AdaBoost randomly sampled the weights (w)

This wasn't essential and has been altered to use deterministic weights

Friedman (2002) introduced stochastic gradient boosting that uses a new subsample at each boosting iteration to find and project the gradient

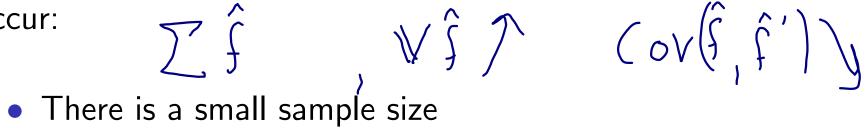
This has two possible benefits

- Reduces computations/storage
 (But increases read/write time)
- Can improve performance

GBM: Subsampling

You can expect performance gains when both of the following

occur:



- The base learner is complex

This suggests the usual 'variance reduction through lowering covariance" interpretation

The effect is complicated, though as subsampling

- increases the variance of each term in the sum
- decreases the covariance of each term in the sum

GBM: CHOOSING B

X = PATRAIN

There are three built in methods:

- INDEPENDENT TEST SET: using the nTrain parameter to say 'use only this amount of data for training' (Be sure to uniformly permute your data set first.)
- OUT-OF-BAG (OOB) ESTIMATION: If bag.fraction is
 > 0, then gbm use OOB at each iteration to find a good

(Note: OOB tends to select a too-small B)

K-FOLD CROSS VALIDATION (CV): It will fit cv.folds+1 models
 (The '+1' is the fit on all the data that is reported)

GBM: VARIABLE IMPORTANCE MEASURE

For tree-based methods, there are two variable importance measures:

- relative.influence
- permutation.test.gbm
 (This is currently labeled experiemental)

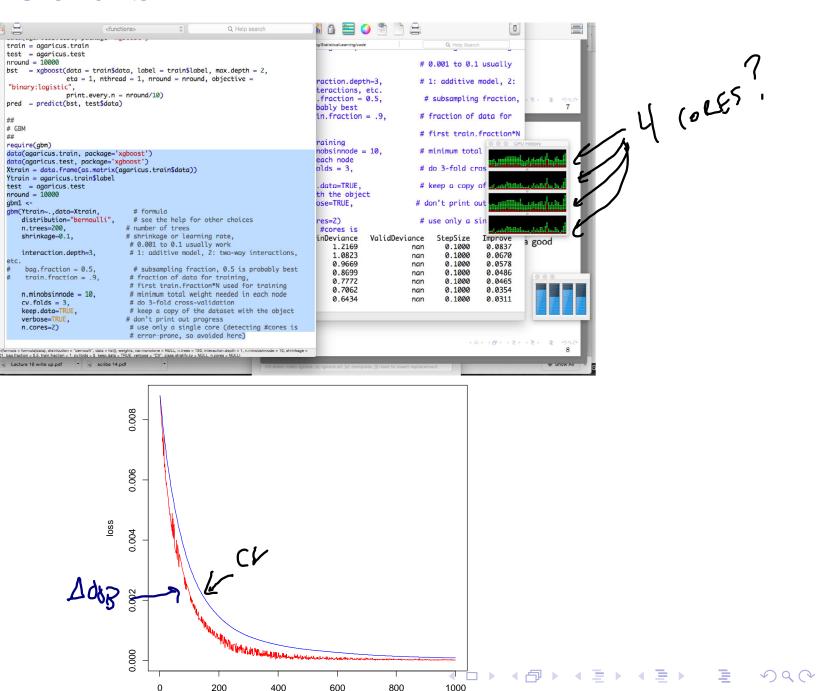
These have similar definition relative to bagging, however they use all of the data instead of the OOB

GBM: SAMPLE CODE

```
gbm(Ytrain~.,data=Xtrain,
 distribution="bernoulli",
 n.trees=500,
 shrinkage=0.01, ->> "LFARNWLRATE"
 interaction.depth=3,
bag.fraction = 0.5, SUBSAMPUING
 n.minobsinnode = 10,
cv.folds = 3, \(\chi\)
 keep.data=TRUE,
 verbose=TRUE,
n.cores=2)
```

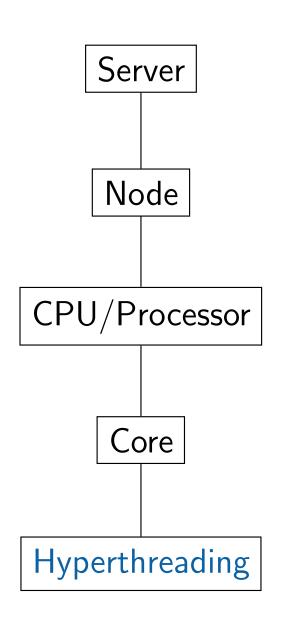
GBM: FIGURES

2 CORES



В

DISTRIBUTED COMPUTING HIERARCHY



EXAMPLE: A server might have

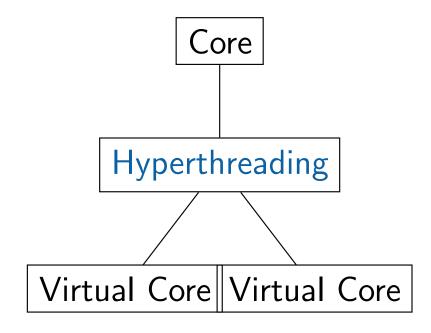
- 64 nodes
- 2 processors per node
- 16 cores per processor
- hyper threading

The goal is to somehow allocate a job so that these resources are used efficiently

Jobs are composed of threads, which are specific computations

Hyperthreading

Developed by Intel, Hypertheading allows for each core to pretend to be two cores



This works by trading off computation and read-time for each core

BOOSTING: LEARNING SLOW

It is best to set the learning rate at a small number.

This is usually calibrated by the computational demands of the problem.

A good strategy is to pick a number, say .001

Run with n.trees relatively small and see how long it takes

Keep adding trees with gbm.more. If this is taking too long, increase the learning rate

XGBoost

XGBOOST

This stands for:

Extreme Gradient Boosting

It has some advances related to gbm

XGBOOST: ADVANCES

- SPARSE MATRICES: Can use sparse matrices as inputs (In fact, it has its own matrix-like data structure that is recommended)
- OPENMP: Incorporates OpenMP on Windows/Linux (OpenMP is a message passing parallelization paradigm for shared memory parallel programming)
- Loss functions: You can specify your own loss/evaluation functions

(You need to use xgb.train for this)

