Lecturer: Prof. Homrighausen Scribe: Zeke Wang

First, we talk about the Setup.

Suppose we have data $\mathcal{D}=(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$, where $X_i \in \mathbb{R}^p$ are the features (or explanatory variables or predictors or covariates, not the independent variables); $Y_i \in \mathbb{R}$ are the response variables.(not dependent variable). Our goal for this class is to find a way to explain (at least approximately) the relationship between X and Y.

Then we talk about the prediction risk for regression. Given the training data \mathcal{D} , we want to predict some independent test data Z = (X, Y). This means forming a \hat{f} , which is a function of both the range of X and the training data \mathcal{D} , which provides predictions $\hat{Y} = \hat{f}(X)$.

The quality of this prediction is measured via the prediction risk¹

$$R(\hat{f}) = \P_{D,Z}(Y - \hat{f}(X))^2$$

We know that the regression function, $f_*(X) = \P[Y|X]$, is the best possible predictor. We should note that f_* is unknown

There are some notations recap: X is a vector of measurements for each subject; x is a vector of subjects for each measurement,; X_i^j is the j^{th} measurement on the i^{th} subject.

Imposing Linearity

Multiple Regression

If we specify the model: $f_*(X) = X^{\top} \beta = \sum_{j=1}^p x_j \beta_j$

$$\Rightarrow Y_i = X_i^{\top} \beta + \epsilon_i$$

Then we recover the usual linear regression formulation

$$= \left[\begin{array}{ccc} x_1 & \cdots & x_p \end{array} \right] = \left[\begin{array}{c} X_1^\top \\ X_2^\top \\ \vdots \\ X_n^\top \end{array} \right].$$

When referring to j^{th} entry of any X_i , we write X_i^j .

Commonly, a column $x_0^{\top} = \underbrace{(1,\ldots,1)}_{n \text{ times}}$ is included. This encodes an intercept term, with intercept parameter β_0 . We could seek to find a β such that $Y \approx \beta$.

 $[\]overline{}^1$ Note: sometimes we integrate with respect to D only, Z only, neither (loss), or both.

Polynomial effects

Instead, we may believe

$$f_*(X) = \beta_0 + \sum_{j=1}^p X^j \beta_j + \sum_{j=1}^p \sum_{j'=1}^p X^j X^{j'} \alpha_{j,j'}$$

Then the feature matrix is

Here, interpret vector multiplication in the entrywise sense, as in R: $\mathbf{x} * \mathbf{y}$.

General form

Specify

functions $\phi_k : {}^p \to , k = 1, \dots, K$

$$= [\phi_k(X_i)] = \begin{bmatrix} \Phi(X_1)^\top \\ \Phi(X_2)^\top \\ \vdots \\ \Phi(X_n)^\top \end{bmatrix} \in R^{n \times K},$$

where $\Phi(\cdot)^{\top} = (\phi_1(\cdot), \dots, \phi_K(\cdot)).$

Example

$$\phi_k(X) = X^j X^{j'}$$

is an interaction for the j^{th} and j'^{th} covariates.

In this case
$$K = \binom{p}{2} + p = p(p-1)/2 + p = (p^2 + p)/2$$

We don't know if f_* can actually be expressed as a linear function. Hence, write

$$\Phi = \{ f : \exists (\beta_k)_{k=1}^K \text{ such that } f = \sum_{k=1}^K \beta_k \phi_k = \beta^\top \Phi \}$$

and

$$f_{*,\Phi} =_{f \in \Phi} \P \ell_f$$
.

The function $f_{*,\Phi}$ is known as the linear oracle. This is the object we are estimating when using a linear model. (Alternatively, we are assuming $f_* \in \Phi$)

Multiple regression redux

Let K=p and define ϕ_k to be the coordinate projection map

That is,

$$\phi_k(X_i) \equiv X_i^k$$

We recover the usual linear regression formulation

$$= [\phi_k(X_i)] = \begin{bmatrix} \Phi(X_1)^\top \\ \Phi(X_2)^\top \\ \vdots \\ \Phi(X_n)^\top \end{bmatrix} = \begin{bmatrix} X_1^1 & X_1^2 & \cdots & X_1^p \\ X_2^1 & X_2^2 & \cdots & X_2^p \\ \vdots & & & \\ X_n^1 & X_n^2 & \cdots & X_n^p \end{bmatrix} = \begin{bmatrix} X_1^\top \\ X_2^\top \\ \vdots \\ X_n^\top \end{bmatrix}.$$

Orthogonal basis expansion

Suppose $f_* \in$, where is a Hilbert space with norm induced by the inner product $\langle \cdot, \cdot \rangle$.

Let $(\phi_k)_{k=1}^{\infty}$ be an orthonormal basis for

Write

$$f_* = \sum_{k=1}^{\infty} \langle f_*, \phi_k \rangle \phi_k = \sum_{k=1}^{\infty} \beta_k \phi_k$$

Then we can estimate $f_{*,\Phi}$ by finding the coefficients of the projection on Φ . By Parseval's theorem for Hilbert spaces, this induces an approximation error of $\sum_{k=K+1}^{\infty} \beta_k^2$. This is small if f_* is smooth. (for instance, if f_* has m derivatives, then $\beta_k \approx k^{-m}$)

Neural Nets

Let

$$\phi_k(X) = \sigma(\alpha_k^\top X + b_k),$$

where $\sigma(t) = 1/(1 + e^{-t})$ is the sigmoid activation function. Then we can form the feature matrix

$$= \begin{bmatrix} \phi_1(X_1) & \phi_2(X_1) & \cdots \\ & \vdots & \\ \phi_1(X_n) & \phi_2(X_n) & \cdots \end{bmatrix}$$

For future reference, this is a

"single-layer feed-forward neural network model with linear output"

It is actually a bit more complicated, as the parameters in the σ map are estimated, and hence this is actually nonlinear.

Radial basis functions

Let

$$\phi_k(X) = e^{-||\mu_k - X||_2^2/\lambda_k}.$$

Then $f_{*,\Phi}$ is called an:

"Gaussian radial-basis function estimator'.

This turns out to be a parametric form of a more general technique known as Gaussian process regression.

Detour

WARNING: It is common to conflate: the number of original covariates (p) and the number of created features (K) This means we will always write $\in^{n \times p}$, regardless of the transformation Φ that generates the matrix

The reasons for this are: multiple regression comes from a particular, degenerate choice of Φ ; the mapping Φ is often not explicitly created (and $K = \infty$)

Think of X as the vector after transformations and $\in^{n \times p}$ regardless of the choice of Φ .

Turning these ideas into procedures

Each of these methods have parameters to choose:

- p could be very large. Do we include all covariates?
- If we include some polynomial (or other function) terms, should be include all of them?
- For neural nets, we need to choose: the activation function σ , the directions α_k , bias terms b_k , as well as the number of units in the hidden layer

Additionally, we need to estimate the associated coefficient vector β , α , or whatever. We would like the data to inform these parameters.

Training error and risk estimation

The linear oracle is defined to be

$$f_{*,\Phi} =_{f \in \Phi} \P \ell_f.$$

Reminder: for regression, $\ell_f(Z) = (f(X) - Y)^2$

Hence, it is intuitive to use \P to form the training error

$$\hat{R}(f) = \hat{\P}\ell_f = \frac{1}{n} \sum_{i=1}^n \ell_f(Z_i) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 = \frac{1}{n} Y - \beta_2^2$$

In many statistical applications, this plug-in estimator is minimized. However, this sometimes has disastrous results.

Example

Let's suppose \mathcal{D} is drawn from

n = 30

X = (0:n)/n*2*pi

Y = sin(X) + rnorm(n,0,.25)

Now, let's fit some polynomials to this data.

We consider the following models:

- Model 1: $f(X_i) = \beta_0 + \beta_1 X_i$

- Model 2: $f(X_i) = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3$

- Model 3: $f(X_i) = \sum_{k=0}^{10} \beta_k X_i^k$

- Model 4: $f(X_i) = \sum_{k=0}^{n-1} \beta_k X_i^k$

The \hat{R} 's are:

 $\hat{R}(\text{Model 1}) = 10.98$

 $\hat{R}(\text{Model 2}) = 2.86$

 $\hat{R}(\text{Model }3) = 2.28$

 $\hat{R}(\text{Model }4) = 0$

Bias and Variance

Prediction risk for regression

Note that $R(\hat{f})$ can be written as

$$R(\hat{f}) = \int \mathrm{bias}^2(x) d\P_X + \int \mathrm{var}(x) d\P_X + \sigma^2$$

where

bias
$$(x) = \P \hat{f}(x) - f_*(x)$$

var $(x) = \hat{f}(x)$
 $\sigma^2 = \P (Y - f_*(X))^2$

As an aside, this decomposition applies to much more general loss functions.

Bias-variance tradeoff

This can be heuristically thought of as

Prediction risk = $Bias^2 + Variance$.

There is a natural conservation between these quantities. Low bias \rightarrow complex model \rightarrow many parameters \rightarrow high variance

The opposite also holds. When $\hat{f} \equiv 0$, it has low variance but high bias.

We'd like to 'balance' these quantities to get the best possible predictions