October 20, 2015 Lecturer: Prof. Homrighausen Scribe: Zeke Wang ### Kernel methods Intuition: Many methods have linear decision boundaries. We know that sometimes this isn't sufficient to represent data. For example, sometimes we need to included a polynomial effect or a log transform in multiple regression. And sometimes, a linear boundary, but in a different space makes all the difference. So we should think about another method to deal with these kinds of problems. ### Optimal separating hyperplane Here is a reminder: The Wolfe dual, which gets maximized over $\alpha$ , produces the optimal separating hyperplane Wolf dual = $$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_i \alpha_k Y_i Y_k X_i^{\top} X_k$$ $\alpha_i \ge 0$ A similar result holds after the introduction of slack variables It's very important here that the features only enter via $$X^\top X' = \langle X, X' \rangle$$ ## (Kernel) ridge regression Suppose we want to predict at X, then $$\hat{f}(X) = X^{\top} \lambda = X^{\top \top} (^{\top} + \lambda I)^{-1} Y$$ Also, $$^{\top} = \begin{bmatrix} \langle X_1, X_1 \rangle & \langle X_1, X_2 \rangle & \cdots & \langle X_1, X_n \rangle \\ & \vdots & & \\ \langle X_n, X_1 \rangle & \langle X_n, X_2 \rangle & \cdots & \langle X_n, X_n \rangle \end{bmatrix}$$ and $$X^{\top \top} = [\langle X, X_1 \rangle, \langle X, X_2 \rangle, \cdots, \langle X, X_n \rangle]$$ Again, we have the covariates enter only as $$\langle X, X' \rangle = X^\top X'$$ Conclusion: A Linear rule in a transformed space can have a nonlinear boundary in the original features. ## Logistic regression: transformations Reminder: The logistic model: untransformed $$logit(\P(Y = 1|X)) = \beta_0 + \beta^\top X$$ = $\beta_0 + \beta_1$ balance + $\beta_2$ income The decision boundary is the hyperplane $\{X: \beta_0 + \beta^\top X = 0\}$ . This is linear in the feature space. Adding the polynomial transformation $\Phi(X) = (x_1, x_2, x_2^2)$ : $$\begin{aligned} \text{logit}(\P(Y = 1 | X)) &= \beta_0 + \beta^\top \Phi(X) \\ &= \beta_0 + \beta_1 \text{balance} + \beta_2 \text{income} + \beta_3 \text{income}^2 \end{aligned}$$ Decision boundary is still a hyperplane $\{X:\beta_0+\beta^\top\Phi(X)=0\}$ . This is nonlinear in the feature space! Of course, as we include more transformations, we need to choose the transformations manually, and also Computations can become difficult if we aren't careful. We need to regularize to prevent overfitting. ## Kernel Methods ### Nonnegative definite matrices Let $A \in {}^{p \times p}$ be a symmetric, nonnegative definite matrix: $$z^{\top}Az \ge 0$$ for all z and $A^{\top} = A$ Then, A has an eigenvalue expansion $$A = UDU^{\top} = \sum_{j=1}^{p} d_j u_j u_j^{\top}$$ where $d_j \geq 0$ Each such A, generates a new inner product $$\langle z, z' \rangle = z^{\top} z' = z^{\top} \underbrace{I}_{\text{Identity}} z'$$ $$\langle z, z' \rangle_A = z^{\top} A z'$$ If we enforce A to be positive definite, then $\langle z, z \rangle_A = ||z||_A^2$ is a norm. Suppose $A_i^j$ is the (i,j) entry in A, and $A_i$ is the $i^{th}$ row $$Az = \begin{bmatrix} A_1^\top \\ \vdots \\ A_p^\top \end{bmatrix} z = \begin{bmatrix} A_1^\top z \\ \vdots \\ A_p^\top z \end{bmatrix}$$ Note: Multiplication by A is really taking inner products with its rows. Hence, $A_i$ is called the (multiplication) kernel of matrix A ### Kernel methods $k: \mathcal{X} \times \mathcal{X} \to \text{is a symmetric, nonnegative definite kernel.}$ Write the eigenvalue expansion of k as $$k(X, X') = \sum_{j=1}^{\infty} \theta_j \phi_j(X) \phi_j(X')$$ with - $\theta_i \ge 0$ nonnegative definite - $(\theta_j)_{j=1}^{\infty} = \sum_{j=1}^{\infty} \theta_j^2 < \infty$ - The $\phi_j$ are orthogonal eigenfunctions: $\int \phi_j \phi_{j'} = \delta_{j,j'}$ This is called Mercer's theorem, and such a k is called a Mercer kernel. ## Kernel: Example Back to polynomial terms/interactions: Form $$k_d(X, X') = (X^{\top} X' + 1)^d$$ $k_d$ has $M = \binom{p+d}{d}$ eigenfunctions These span the space of polynomials in p with degree d There's another example. Let $d = p = 2 \Rightarrow M = 6$ and $$k(u, v) = 1 + 2u_1v_1 + 2u_2v_2 + u_1^2v_1^2 + u_2^2v_2^2 + 2u_1u_2v_1v_2$$ $$= \sum_{k=1}^{M} \Phi_k(u)\Phi_k(v)$$ $$= \Phi(u)^{\top}\Phi(v)$$ $$= \langle \Phi(u), \Phi(v) \rangle$$ where $$\Phi(v)^{\top} = (1, \sqrt{2}v_1, \sqrt{2}v_2, v_1^2, v_2^2, \sqrt{2}v_1v_2)$$ It's very important that these equalities are everything that makes kernelization work! ## Kernel: Conclusion We could recap that: $$k(u,v) = 1 + 2u_1v_1 + 2u_2v_2 + u_1^2v_1^2 + u_2^2v_2^2 + 2u_1u_2v_1v_2$$ = $\langle \Phi(u), \Phi(v) \rangle$ Some methods only involve features via inner products $X^{\top}X' = \langle X, X' \rangle$ . (We've explicitly seen two: ridge regression and support vector classifiers) If we make transformations of X to $\Phi(X)$ , the procedure depends on $\Phi(X)^{\top}\Phi(X') = \langle \Phi(X), \Phi(X') \rangle$ . It's crucial that we can compute this inner product via the kernel: $$k(X, X') = \langle \Phi(X), \Phi(X') \rangle$$ Instead of creating a very high dimensional object via transformations, choose a kernel k. Now, the only thing left to do is form the outer product of kernel evaluations $$\mathbb{K} = [k(X_i, X_{i'})]_{1 \le i, i' \le n}$$ ## (Kernel) SVM ### Kernel SVM Recall that: $$\frac{1}{2}\beta_2^2 - \sum_{i=1}^n \alpha_i [Y_i(X_i^{\top}\beta + \beta_0) - 1]$$ Derivatives with respect to $\beta$ and $\beta_0$ imply: - $\beta = \sum_{i=1}^{n} \alpha_i Y_i X_i$ - $0 = \sum_{i=1}^{n} \alpha_i Y_i$ Write the solution function $$h(X) = \beta_0 + \beta^{\top} X = \beta_0 + \sum_{i=1}^{n} \alpha_i Y_i X_i^{\top} X$$ Kernelize the support vector classifier $\Rightarrow$ support vector machine (SVM): $$h(X) = \beta_0 + \sum_{i=1}^{n} \alpha_i Y_i k(X_i, X)$$ ### General kernel machines After specifying a kernel function, it can be shown that many procedures have a solution of the form $$\hat{f}(X) = \sum_{i=1}^{n} \gamma_i k(X, X_i)$$ For some $\gamma_1, \ldots, \gamma_n$ Also, this is equivalent to performing the method in the space given by the eigenfunctions of k $$k(u,v) = \sum_{j=1}^{\infty} \theta_j \phi_j(u) \phi_j(v)$$ Also, (the) feature map is $$\Phi = [\phi_1, \dots, \phi_p, \dots]$$ ### Kernel SVMs Hence specifying $\Phi$ itself unnecessary, we need only define the kernel that is symmetric, positive definite Some common choices for SVMs: • Polynomial: $k(x,y) = (1+x^{\top}y)^d$ • Radial basis: $k(x,y) = e^{-\tau x - y_b^b}$ For example, b=2 and $\tau=1/(2\sigma^2)$ is (proportional to) the Gaussian density ## Kernel SVMs: Summary the solution form for SVM is $\beta = \sum_{i=1}^{n} \alpha_i Y_i X_i$ Kernelized, this is $$\beta = \sum_{i=1}^{n} \alpha_i Y_i \Phi(X_i)$$ Therefore, the induced hyperplane is: $$h(X) = \Phi(X)^{\top} \beta + \beta_0 = \sum_{i=1}^{n} \alpha_i Y_i \langle \Phi(X), \Phi(X_i) \rangle + \beta_0$$ $$= \sum_{i=1}^{n} \alpha_i Y_i k(X, X_i) + \beta_0$$ The final classification is still $\hat{g}(X) = \operatorname{sgn}(\hat{h}(X))$ # SVMs via penalization Note that SVMs can be derived from penalized loss methods. The support vector classifier optimization problem: $$\min_{\beta_0,\beta} \frac{1}{2} \beta_2^2 + \lambda \sum \xi_i$$ subject to $$Y_i h(X_i) \ge 1 - \xi_i, \xi_i \ge 0$$ , for each i Writing $h(X) = \Phi(X)^{\top} \beta + \beta_0$ , consider $$\min_{\beta,\beta_0} \sum_{i=1}^{n} [1 - Y_i h(X_i)]_+ + \tau \beta_2^2$$ These optimization problems are the same! With the relation: $2\lambda = 1/\tau$ . The loss part is the hinge loss function $$\ell(X,Y) = [1 - Yh(X)]_+$$ The hinge loss approximates the zero-one loss function underlying classification. It has one major advantage, that is convexity. ## Surrogate losses: convex relaxation Looking at $$\min_{\beta,\beta_0} \sum_{i=1}^{n} [1 - Y_i h(X_i)]_+ + \tau \beta_2^2$$ It is tempting to minimize (analogous to linear regression) $$\sum_{i=1}^{n} \mathbf{1}(Y_i \neq \hat{g}(X_i)) + \tau \beta_2^2$$ However, this is nonconvex (in u = h(X)Y) A common trick is to approximate the nonconvex objective with a convex one. This is known as convex relaxation with a surrogate loss function ## Surrogate losses Idea: We can use a surrogate loss that mimics this function while still being convex. - Hinge: $[1 Yh(X)]_{+}$ - Logistic: $\log(1 + e^{-Yh(X)})$