Ост. 8, 2015

Lecturer: Prof. Homrighausen Scribe: Zeke Wang

Random Forest

Random Forest is a small extension of Bagging, in which the bootstrap trees are decorrelated

The idea is, we draw a bootstrap sample and start to build a tree. At each split, we randomly select m of the possible p features as candidates for the split; A new sample of size m of the features is taken at each split. Usually, we use about $m = \sqrt{p}$

In other words, at each split, we aren't even allowed to consider the majority of possible features!

Suppose there is 1 really strong feature and many mediocre ones.

- Then each tree will have this one feature in it,
- Therefore, each tree will look very similar (i.e. highly correlated).
- Averaging highly correlated things leads to much less variance reduction than if they were uncorrelated.

If we don't allow some trees/splits to use this important feature, each of the trees will be much less similar and hence much less correlated.

Bagging is Random Forest when m=p, that is, when we can consider all the features at each split.

An average of B i.i.d random variables has variance

$$\frac{\sigma^2}{B}$$

An average of B random variables has variance

$$\rho\sigma^2 + \frac{(1-\rho)\sigma^2}{B}$$

for correlation ρ

As $B \to \infty$, the second term goes to zero, but the first term remains. Hence, correlation of the trees limits the benefit of averaging

Sensitivity and specificity

Sensitivity: The proportion of times we label recession, given

that recession is the correct answer.

Specificity: The proportion of times we label no recession, given

that no recession is the correct answer.

We can think of this in terms of hypothesis testing. If

 H_0 : no recession,

then

Sensitivity: $P(\text{reject } H_0|H_0 \text{ is false}), [1 - P(\text{Type II error})]$ Specificity: $P(\text{accept } H_0|H_0 \text{ is true}), [1 - P(\text{Type I error})]$

Confusion matrix

We can report our results in a matrix:

		Truth	
		Recession	No Recession
Our	Recession	(A)	(B)
Predictions	No Recession	(C)	(D)

The total number of each combination is recorded in the table.

The overall miss-classification rate is

$$\frac{(B)+(C)}{(A)+(B)+(C)+(D)} = \frac{(B)+(C)}{total \ observations}$$

Sensitivity is (A)/[(A) + (C)], Specificity is (D)/[(B) + (D)]

Tree results: Confusion matrices

			Truth		
			Growth	Recession	Mis-Class
	Null	Growth	111	26	
		Recession	0	0	18.9%
Our	Tree	Growth	99	3	
Preds		Recession	12	23	10.9%
	Random	Growth	102	5	
	Forest	Recession	9	21	10.2%
	Bagging	Growth	104	3	
		Recession	7	23	7.3%

Tree results: Sensitivity & specificity

	Sensitivity	Specificity
Null	0.000	1.000
Tree	0.884	0.891
Random Forest	0.807	0.918
Bagging	0.884	0.936

Out-of-bag error estimation for bagging

		Truth		
		Growth	Recession	Miss-Class
OOB Bagging	Growth	400	10	
	Recession	21	46	6.5%
Test Bagging	Growth	104	3	
	Recession	7	23	7.3%

Random Forest in R

```
\begin{array}{l} \operatorname{require}(\operatorname{randomForest}) \\ \operatorname{out.rf} = \operatorname{randomForest}(X,Y,\operatorname{importance=T,mtry=p}) \ \operatorname{class.rf} = \operatorname{predict}(\operatorname{out.rf},X_0) \end{array}
```

Notes:

- The importance statement tells it to produce the variable importance measures
- the mtry = p tells random Forest to consider all the covariates at each split This particular choice corresponds to bagging
- \bullet random Forest also supports formulae out.rf = random Forest
(Y .,data=X) However, it can take much longer to run

#Permutation variable importance > head(importance(out.rf,type=1)) MeanDecreaseAccuracy Alabama 3.7277511 Alaska 1.7941463 Arizona 2.9659623 Arkansas 0.8341577 California 7.2973572 #Mean decrease variable importance > head(importance(out.rf,type=2)) MeanDecreaseGini

Alabama

0.4551073

3

Alaska 1.6440170 Arizona 0.7025527 Arkansas 0.3503138 California 1.4616203

#variable importance plot: varImpPlot(out.rf,type=2)

Additional random forest topics

Claim: Random forest cannot overfit.

This is and isn't true. Write

$$\hat{f}_{rf}^B = \frac{1}{B} \sum_{b=1}^B T(x; \Theta_b)$$

where Θ_b characterizes the b^{th} tree

That is, the split variables, cutpoints of each node, terminal node values.

Increasing B does not cause Random forest to overfit, rather removes the Monte-Carlo-like approximation error

$$\hat{f}_{rf}(x) =_{\Theta} T(x, \Theta) = \lim_{B \to \infty} \hat{f}_{rf}^{B}$$

However, this limit can overfit the data, the average of fully grown trees can result in too complex of a model

Note that Segal (2004) shows that a small benefit can be derived by stopping each tree short, but thus induce another tuning parameter