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WHAT 1S CLASSIFICATION?

All the previous regression material presumes that the response Y
is

(Drug susceptibility, area burned by forest fires, etc)

However, in many cases, the responses are

(Digit recognition, cancer status, etc)



AN OVERVIEW OF CLASSIFICATION

Some examples:

e A person arrives at an emergency room with a set of
symptoms that could be 1 of 3 possible conditions. Which one
is it?

e A online banking service must be able to determine whether
each transaction is fraudulent or not, using a customer’s
location, past transaction history, etc.

e Given a set of individuals sequenced DNA, can we determine
whether various mutations are associated with different
phenotypes?

All of these problems are regression problems. They are
problems.



THE SET-UP

It begins just like regression: suppose we have observations

(X1, Y1), ..., (Xn, Ya).

Again, we want to estimate a function that maps X into Y that
helps us predict as yet observed data.

(This function is known as a classifier)

The same constraints apply:

e We want a classifier that predicts test data, not just the
training data.

e Often, this comes with the introduction of some bias to get
lower variance and better predictions.



How DO WE MEASURE QUALITY?

In regression, we have Y; € R and (generally) use squared error loss

However, when Y; only takes a few possible values, we will use
prediction risk instead:

pred = E[1(Yo # Y)] = P(Y # Yo),

where

1(A) = {1 if statement A is true

0 if statement A is true

is an indicator function

We want to label or classify a new observation (Xp, Yp) such that
Y =Y as often as possible.
(Implicitly, ¥ is a function of Xo and the sample )
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BEST CLASSIFIER

When we did regression, we measured quality by
pred = E(Y — Y)?

(This is still an quantity!)

It turns out, the closest procedure we can find, is:

EY|X = argminE(Y — Y)?
Y

known as the regression function



BEST CLASSIFIER
We can define the same quantity for classification

argminE[1(Yp # Y)] = argmin P(Y # Yp),
14 4

In classification this is known as the Bayes' rule
In analogy to the regression function, the Bayes’ rule looks like:
0if P(Y =0|X) > P(Y = 1|X)

or
Lif P(Y = 1|X) > P(Y = 0/X)

(That is, we want to maximize the conditional probability)

EvPHASIS: The Bayes' rule, like the regression function, is
unknown /unknowable

We can try to estimate them, however.



Introductory example
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AN INTRODUCTORY EXAMPLE

Suppose we work for a credit card company and we wish to
identify people that are likely to default on their credit card debt

We have predictors (for 10,000 people):
e Student status
e Income
e Balance

Along with their default status:

Y — {1 if person defaults

0 if person doesn’t default

Let's look at some plots.



AN INTRODUCTORY EXAMPLE
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FIGURE: The red are people without defaults, green are defaults. The

‘+" are students, the ‘A’ are not students.
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AN INTRODUCTORY EXAMPLE

student status

0 500 1000 1500 2000 2500 No Yes

balance

Some comments:
e Income doesn't seem to be related to defaults
e Student status is also unrelated to defaults, but highly related
to income
e Balance seems to strongly predict default status.
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AN INTRODUCTORY EXAMPLE: WHY NOT USE
REGRESSION?

Suppose for a moment we only consider balance. Then, we can run
a simple linear regression of default status on balance

Y = rep(0,n)

Y[default == ’Yes’] = 1
out.lm = 1m(Y~balance)
summary (out . 1m)

R will happily do this.
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AN INTRODUCTORY EXAMPLE: WHY NOT USE
REGRESSION?

> summary (out.1lm)

Call:
Im(formula = Y ~ balance)
Residuals:

Min 1Q Median 3Q Max
-0.23533 -0.06939 -0.02628 0.02004 0.99046
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -7.519e-02 3.354e-03 -22.42 <2e-16 *x**
balance 1.299e-04 3.475e-06  37.37 <2e-16 **x
Signif. codes: O *x*x 0.001 **x 0.01 * 0.05 . 0.1 1
Residual standard error: 0.1681 on 9998 degrees of freedom
Multiple R-squared: 0.1226, Adjusted R-squared: 0.1225
F-statistic: 1397 on 1 and 9998 DF, p-value: < 2.2e-16
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AN INTRODUCTORY EXAMPLE: WHY NOT USE
REGRESSION?

Let’s plot our data with estimated regression function:

Default
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Not so great..



AN INTRODUCTORY EXAMPLE: GENERALIZED
LINEAR MODELS (GLMS)

GLMs differ from ordinary regression by modeling the probabilities
as opposed to the outcomes themselves. To wit:

Regression:
Yi=X'B+e

Logistic regression (with logit link): Let w(X;) = Pr(Y; = 1|.X;),

jog (%) pay

This is known as the logistic function.
It is differentiable, maps [0,1] to R, and is invertible. Its inverse is:

N exp{X 8}
m(Xi) = 1+ exp{X.' 3}
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AN INTRODUCTORY EXAMPLE: GENERALIZED
LINEAR MODELS (GLMS)

Let's look at each of these terms

o 7(X;) = Pr(Y; =1|X;) is the Y isequal to 1 at a
given level of X = X;

m(Xi)
1 —m(Xi)

is known as the odds that Y is equal to 1.
X.
log _mXi)
1-— 7T(X,‘)

Effectively, we are assuming that the log odds of Y =1 (which is
always called a success) is linear in the predictors X

is the log odds.
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AN INTRODUCTORY EXAMPLE: GENERALIZED
LINEAR MODELS (GLMS)

With regression, there was a closed form solution for an estimate
of j:
f=X"X)"IxTy.

This was due to estimation via least squares

(This is also the maximum likelihood estimator (MLE) under Gaussian errors)

For GLMs, the likelihood is different, but we still use the MLE

There isn't any closed form solution and all solution methods are
iterative maximizers.

Of course, this make no real difference, since we are going to use
someone else’s code.
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AN INTRODUCTORY EXAMPLE: GENERALIZED
LINEAR MODELS (GLMS)

out.glm = glm(default~balance,family=’binomial’)
> summary (out.glm)

Call:
glm(formula = default ~ balance, family = "binomial")
Deviance Residuals:

Min 1Q Median 3Q Max
-2.2697 -0.1465 -0.0589 -0.0221  3.7589
Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.065e+01 3.612e-01 =-29.49 <2e-16 *x**
balance 5.499e-03 2.204e-04 24.95 <2e-16 *x*x*
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1596.5 on 9998 degrees of freedom
AIC: 1600.5

Number of Fisher Scoring iterations: 8 18



AN INTRODUCTORY EXAMPLE: COMPARE GLM TO

REGRESSION.
Let's plot our data

with

e Simple Linear Regression (black)

e GLM (blue)
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AN INTRODUCTORY EXAMPLE: MAKING
PREDICTIONS

Once we get B, making predictions is a simple matter.

Suppose we want to estimate the probability that someone with a
balance of $1,000 will default. We form:

—10. . 1
#(1,000) exp{—10.65 + 0.0055 * 1000}

= = 0.00576.
1 + exp{—10.65 + 0.0055 * 1000}

Maybe look at $2,000 instead:

X exp{—10.65 + 0.0055 x 2000}
2,000) = — 0.586.
#(2,000) = 7 exp{—10.65 + 0.0055 2000}
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AN INTRODUCTORY EXAMPLE: CLASSIFICATION

But, Darren, | thought we were

To form a classifier out of these predictions round the probabilities!

. exp{—10.65 + 0.0055 * 1000}
1,000) = = 0.00576.
#(1,000) = 4 57-10.65 + 0.0055 1000

Thus, a balance of $1,000 would be classified as no default

Maybe look at $2,000 instead:

R exp{—10.65 + 0.0055 * 2000}
2,000) = = 0.586.
7(2,000) = -0 5T=70.65 + 0.0055 2000}

A balance of $2,000 would be classified as default
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AN INTRODUCTORY ExAMPLE: CoMPARE GLM TO
REGRESSION.

Results of using a cut-off of 0.5
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SENSITIVITY AND SPECIFICITY

We need two concepts:

Sensitivity: Classifying a person as a ‘default’ given that they
defaulted.
(This is like correctly rejecting the null hypothesis, i.e. power)
Specificity: Classifying a person as ‘no default’ given that they
did not default

(this is like not committing a type | error i.e. 1- P(type | error))

As suggested by the notation, it is easiest to think of this in terms
of
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SENSITIVITY AND SPECIFICITY

TRAINING TRAINING TRAINING
ERROR SENSITIVITY  SPECIFICITY
Linear Reg. | 0.033 0.000 1.000
GLM 0.027 0.300 0.995
where

1 .
e TRAINING ERROR: E;l(yi #Yi)
i

1 -
e TRAINING SENSITIVITY: ———— E 1(Y; = default)
# default
i€default
e TRAINING SPECIFICITY:
1

# no default >~ (Vi =no default)

i€no default
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Discussion on confounding

CIRY= = =» T 9ac
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GLMs AND MULTIPLE LOGISTIC REGRESSION:
APPARENT PARADOX

Let's look at just including student as a predictor:

> out.glm.student = glm(default”student,
family=’binomial’)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.50413 0.07071 -49.55 < 2e-16 **x*
studentYes  0.40489 0.11502 3.52 0.000431 *x*x

Versus including income and balance as well.

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 *x*x

balance 5.737e-03 2.319e-04 24.738 < 2e-16 x**x
studentYes -6.468e-01 2.363e-01 -2.738 0.00619 x*x*
income 3.033e-06 8.203e-06 0.370 0.71152

AN
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GLMs AND MULTIPLE LOGISTIC REGRESSION: AN
APPARENT PARADOX

Let's look at just including student as a predictor:

> out.glm.student = glm(default”student,
family=’binomial’)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.50413 0.07071 -49.55 < 2e-16 **x*
studentYes  0.40489 0.11502 3.52 0.000431 *x*x

Versus including income and balance as well.

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 *x*x

balance 5.737e-03 2.319e-04 24.738 < 2e-16 x**x
studentYes -6.468e-01 2.363e-01 -2.738 0.00619 x*x*
income 3.033e-06 8.203e-06 0.370 0.71152

The sign on student is different!
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GLMs AND MULTIPLE LOGISTIC REGRESSION:
APPARENT PARADOX

Default Rate

04 s oe

02

3 i

8 g —L i

HEna

; 1

' e

5 8- :

W o w0 e o W
Credit Card Balance Student Status

[m] = = =

AN

D¢

27



GLMs AND MULTIPLE LOGISTIC REGRESSION: AN
APPARENT PARADOX
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Some observations:
e Students have slightly higher balances
e Non-students have slightly higher default rate (for a given
balance)
e Students have a slightly higher default rate.



How CouLp THIS BE?
The answer is called confounding

For a fixed value of income and balance, students are less risky
(negative coefficient estimate) while overall, students are riskier
(positive coefficient).

The boxplot tells the tale. Students have more debt, which is
associated with more defaults.
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WHAT DOES THIS MEAN?
If you are a credit card company, then:
e If all you know is that they are a student, then you should be
wary.
e However, if you have two candidates with the same balance,
then the student is less risky!
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MORE THAN TWO LEVELS TO THE RESPONSE

You can use logistic regression when your response has more than
two levels. There are two cases:

Unordered response:

Ordered Response:

Called multinomial logistic regression. Essen-
tially, you fit logistic regressions for each level
versus a reference level (examples: eye color
or political preference)

These are common slopes or proportional odds
model (examples: how strongly do you agree
with a statement or number of malformed
limbs in an experiment with mice)
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FOR MORE INFORMATION

See the files:
e glmlectureHandwritten.pdf (introduction to GLMs)

e glmMultilevelResponsehandwritten.pdf (Overview of multilevel
GLMs)

Both are on the website

However, we won't discuss these in depth in this class as there are
other options that are more natural.
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